首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试
MPA考试 | 中科院
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT
新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证
华为认证 | Java认证
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格
报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师
人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平
驾驶员 | 网络编辑
卫生资格 | 执业医师 | 执业药师 | 执业护士
会计从业资格考试会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师
注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师
质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师
设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师
城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏
您现在的位置: 考试吧(Exam8.com) > 计算机等级考试 > 计算机一级考试 > 复习资料 > B > 正文

一级MS Office考点分析 第一章.计算机基础知识

来源:考试吧Exam8.com) 2007-7-24 15:44:02 考试吧:中国教育培训第一门户 模拟考场

  1.2数制与编码
  考点5数制的基本概念
  1.十进制计欺制
   其加法规则是“逢十进一”,任意一个十进制数值都可用0. 1. 2 .3 .4 .5 .6 .7 .8 .9共10个数字符号组成的字符串来表示,这些数字符号称为数码;数码处于不同的位置代表不的数值。例如720.30可以写成7x102+2x101+0x100+3 x10 1+0x10 2,此式称为按权展开表示式
  2. R进制计数制
从十进制计数制的分析得出,任意R进制计数制同样有基数N、和Ri按权展开的表示式。R可以是任意正整数如二进制R为2。
  (1)基数(Radix)
  一个计数所包含的数字符号的个数称为该数的基,.用R表示。例如,对二进制来说,任意一个二进制数可以用0,1两个数字符表示,其基数R等于2。
  (2)位值(权)
  任何一个R进制数都是由一串数码表示的,其中每一位数码所表示的实际值都大小,除数码本身的数值外,还与它所处的位置有关,由位置决定的值就称为位置(或位权)。
位置用基数R的I次幂Ri表示。假设一个R进制数具有n为整数,m位小数,那么其位权为Ri,其中i=-m~n-1。
  (3)数值的按权展开
  任一R进制数的数值都可以表示为:各个数码本身的值与其权的乘积之和。例如,二进制数101.01的按权展开为:
                 101.01B=1×22+0×21+1×20+0×2-1+1×2-2=5.25D
  任意一个具有n位整数和m位小数的R进制数的按权展开为:
  (N)R=dn-1×RN-1+dn-2×RN-2+…+d2×R2+d1×R1+d0×R0+d-1×R-1+…+d-M×R-M其中di为R进制的数码

  考点6二、十、十六进制数的数码
  (1)十进制和二进制的基数分别为10和2,即“逢十进一”和“逢二进一”。它们分别含有10个数码(0,1,2,3,4,5,6,7,8,9)和两个数码(0,1)。位权分别为10i和2i(i=-m-n-1,m,n为自然数)。二进制是计算机中采用的数制,它具有简单可行、运算规则简单、适合逻辑运算的特点。
  (2)十六进制基数为16,即含有16个数字符号:0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F。其中A,B,C,D,E,F分别表示数码10,11,12,13,14,15,权为16i(i=-m~n一1,其中m、n为自然数)。加法运算规则为“逢十六进一”。如表1-3所示列出了0~15这16个十进制数与其他3种数制的对应表示。

  (3)非十进制数转换成十进制数。利用按权展开的方法,可以把任一数制转换成十进制数。例如:
            1010. 101 B=1 ×23+0 ×22+1 ×21+0 ×2 01×2-1+0 ×2-2+1×2-3
只要掌握了数制的概念,那么将任一R进制数转换成十进制数的方法都是一样的。
  (4)十进制整数转换成二进制整数。把十进制整数转换成二进制整数,其方法是采用“除二取余”法。具体步骤是:把十进制整数除以2得一商数和一余数;再将所得的商除以2,又得到一个新的商数和余数;这样不断地用2去除所得的商数,直到商等于0为止。每次相除所得的余数便是对应的二进制整数的各位数码。第一次得到的余数为最低有效位,最后一次得到的余数为最高有效位。
  把十进制小数转换成二进制小数,方法是“乘2取整”,其结果通常是近似表示。转换成二进制小数,方法是“乘2取整”,其结果通常是近似表示。上述的方法同样适用于十进制数对十六进制数的转换,只是使用的基数不同。
  (5)二进制数与十六进制数间的转换。二进制数转换成十六进制数的方法是从个位数开始向左按每4位的组划分,不足4位的组以0补足,然后将每组4位二进制数代之以一位十六进制数字即可。十六进制数字即可

上一页  1 2 3 4 5 6 下一页
文章搜索
版权声明:如果计算机等级考试网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本计算机等级考试网内容,请注明出处。