首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试
MPA考试 | 中科院
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT
新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证
华为认证 | Java认证
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格
报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师
人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平
驾驶员 | 网络编辑
卫生资格 | 执业医师 | 执业药师 | 执业护士
会计从业资格考试会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师
注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师
质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师
设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师
城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏
您现在的位置: 考试吧(Exam8.com) > 计算机等级考试 > 计算机二级 > C加加 > 复习资料 > 正文

等考二级C++:全排列生成算法:next_permutation

来源:考试吧Exam8.com) 2010-8-20 15:22:38 考试吧:中国教育培训第一门户 模拟考场
等考二级C++:全排列生成算法:next_permutation

  概念

  C++/STL中定义的next_permutation和prev_permutation函数则是非常灵活且高效的一种方法,它被广泛的应用于为指定序列生成不同的排列。本文将详细的介绍prev_permutation函数的内部算法。

  按照STL文档的描述,next_permutation函数将按字母表顺序生成给定序列的下一个较大的排列,直到整个序列为降序为止。 prev_permutation函数与之相反,是生成给定序列的上一个较小的排列。二者原理相同,仅遍例顺序相反,这里仅以 next_permutation为例介绍算法。

  先对序列大小的比较做出定义:两个长度相同的序列,从两者的第一个元素开始向后寻找,直到出现一个不同元素(也可能就是第它们的第一个元素),该元素较大的序列为大,反之序列为小;若一直到最后一个元素都相同,那么两个序列相等。

  设当前序列为pn,下一个较大的序列为pn+1,这里蕴藏的含义是再也找不到另外的序列pm,使得pn < pm < pn+1。

  问题

  给定任意非空序列,生成下一个较大或较小的排列。

  过程

  根据上述概念易知,对于一个任意序列,最小的排列是增序,最大的为减序。那么给定一个pn要如何才能生成pn+1呢?先来看下面的例子:

  设3 6 4 2为pn,下一个序列pn+1应该是4 2 3 6。观察第一个序列可以发现pn中的6 4 2已经为减序,在这个子集中再也无法排出更大的序列了,因此必须移动3的位置且要找一个数来取代3的位置。在6 4 2中6和4都比3大,但6比3大的太多了,只能选4。将4和3的位置对调后形成排列4 6 3 2。注意,由于4和3大小的相邻关系,对调后产生的子集6 3 2仍保持逆序,即该子集最大的一种排列。而4是第一次移动到头一位的,需要后面的子集为最小的排列,因此直接将6 3 2倒转为2 3 6便得到了正确的一个序列pn+1。

  下面归纳分析该过程。假设一个有m个元素的序列pn,其下一组较大排列为pn+1:

  若pn的最后的2个元素构成一个最小的增序子集,那么直接反转这2个元素使该子集成为减序即可得到pn+1。理由是pn和pn+1的前面m-2 个元素都相等(没有对前面的元素进行操作),仅能靠最后2个元素来分出大小。而这2个元素只能出现2种排列,其中较大的一种是减序。

  若pn的最后最多有s个元素构成一个减序子集,令i = m - s,则有pn(i) < pn(i+1),因此若将pn(i)和pn(i+1)调换必能得到一个较大的排列(不一定是下一个),因此必须保持pn(i)之前的元素不动,并在子集 {pn(i+1), pn(i+2), ..., pn(m)}中找到一个仅比pn(i)大的元素pn(j),将二者调换位置。此时只要得到新子集{pn(i+1), pn(i+2), ..., pn(i), ...,pn(m)}的最小排列即可。注意到新子集仍保持减序,那么直接将其反转即可得到最小的增序子集。

  按以上步骤便可从pn得到pn+1了。

  复杂度

  最好的情况为pn的最后的2个元素构成一个最小的增序子集,交换次数为1,复杂度为O(1),最差的情况为1个元素最小,而后面的所有元素构成减序子集,这样需要先将第1个元素换到最后,然后反转后面的所有元素。交换次数为1+(n-1)/2,复杂度为O(n)。这样平均复杂度即为O(n/2)。

  C++/STL实现

  01#include

  02#include

  03#include

  04using namespace std;

  05//主函数,算法详见相关说明

  06int main(void) {

  07 //循环处理输入的每一个字符串

  08 for (string str; cin >> str;) {

  09 if (str.empty()) {

  10 continue;

  11 }

  12 //如果字符串只有1个字符,则直接输出结束

  13 if (str.length() <= 1) {

  14 cout << "No more Permutation" << endl;

  15 }

  16 //iPivot为右边最大减序子集左边相邻的一个元素

  17 string::iterator iPivot = str.end(), iNewHead;

  18 //查找右边最大的减序子集

  19 for (--iPivot; iPivot != str.begin(); --iPivot) {

  20 if (*(iPivot - 1) < *iPivot ) {

  21 break;

  22 }

  23 }

  24 //如果整个序列都为减序,则重排结束。

  25 if (iPivot == str.begin()) {

  26 cout << "No more Permutation" << endl;

  27 }

  28 //iPivot指向子集左边相邻的一个元素

  29 iPivot--;

  30 //iNewHead为仅比iPivot大的元素,在右侧减序子集中寻找

  31 for (iNewHead = iPivot + 1; iNewHead != str.end(); ++iNewHead) {

  32 if (*iNewHead < *iPivot) {

  33 break;

  34 }

  35 }

  36 //交换iPivot和iNewHead的值,但不改变它们的指向

  37 iter_swap(iPivot, --iNewHead);

  38 //反转右侧减序子集,使之成为最小的增序子集

  39 reverse(iPivot + 1, str.end());

  40 //本轮重排完成,输出结果

  41 cout << str << endl;

  42 }

  43 return 0;

  44}

  相关推荐:2010年9月计算机等级考试精华备考资料汇总
       计算机等级考试二级VB上机试题及答案汇总
       计算机等级考试二级VB模拟试题及答案汇总
文章搜索
版权声明:如果计算机等级考试网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本计算机等级考试网内容,请注明出处。