首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
1.6 树与二叉树(学吧学吧独家稿件)
1、树的基本概念
树是一种简单的非线性结构。在树这种数据结构中,所有数据元素之间的关系具有明显的层次特性。
在树结构中,每一个结点只有一个前件,称为父结点。没有前件的结点只有一个,称为树的根结点,简称树的根。每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。树的最大层次称为树的深度。
2、二叉树及其基本性质
(1)什么是二叉树
二叉树是一种很有用的非线性结构,它具有以下两个特点:1)非空二叉树只有一个根结点;2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
*:根据二叉树的概念可知,二叉树的度可以为0(叶结点)、1(只有一棵子树)或2(有2棵子树)。
(2)二叉树的基本性质(学吧学吧独家稿件)
性质1 在二叉树的第k层上,最多有2k-1(k≥1)
性质2 深度为m的二叉树最多有个2m-1个结点。
性质3 在任意一棵二叉树中,度数为0的结点(即叶子结点)总比度为2的结点多一个。
性质4 具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分。
3、满二叉树与完全二叉树
满二叉树:除最后一层外,每一层上的所有结点都有两个子结点。
完全二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。
*:根据完全二叉树的定义可得出:度为1的结点的个数为0或1。
下图a表示的是满二叉树,下图b表示的是完全二叉树:
完全二叉树还具有如下两个特性:
性质5 具有n个结点的完全二叉树深度为[log2n]+1。
性质6 设完全二叉树共有n个结点,如果从根结点开始,按层序(每一层从左到右)用自然数1,2,…,n给结点进行编号,则对于编号为k(k=1,2,…,n)的结点有以下结论:
①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点的编号为INT(k/2)。
②若2k≤n,则编号为k的左子结点编号为2k;否则该结点无左子结点(显然也没有右子结点)。
③若2k+1≤n,则编号为k的右子结点编号为2k+1;否则该结点无右子结点。
4、二叉树的存储结构
在计算机中,二叉树通常采用链式存储结构。
与线性链表类似,用于存储二叉树中各元素的存储结点也由两部分组成:数据域和指针域。但在二叉树中,由于每一个元素可以有两个后件(即两个子结点),因此,用于存储二叉树的存储结点的指针域有两个:一个用于指向该结点的左子结点的存储地址,称为左指针域;另一个用于指向该结点的右子结点的存储地址,称为右指针域。
*:一般二叉树通常采用链式存储结构,对于满二叉树与完全二叉树来说,可以按层序进行顺序存储[注释1] 。
5、二叉树的遍历(学吧学吧独家稿件)
二叉树的遍历是指不重复地访问二叉树中的所有结点。二叉树的遍历可以分为以下三种:
(1)前序遍历(DLR):若二叉树为空,则结束返回。否则:首先访问根结点,然后遍历左子树,最后遍历右子树;并且,在遍历左右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
(2)中序遍历(LDR):若二叉树为空,则结束返回。否则:首先遍历左子树,然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。
(3)后序遍历(LRD):若二叉树为空,则结束返回。否则:首先遍历左子树,然后遍历右子树,最后访问根结点,并且,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问根结点。
注释1:这样,不仅节省了存储空间,又能方便地确定每一个结点的父结点与左右子结点的位置,但顺序存储结构对于一般的二叉树不适用。
相关推荐:
北京 | 天津 | 上海 | 江苏 | 山东 |
安徽 | 浙江 | 江西 | 福建 | 深圳 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |