首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
Abstract
Software architecture is important for large systems in which it is the main means for, among other things, controlling complexity. Current ideas on software architectures were not available more than ten years ago. Software developed at that time has been deteriorating from an architectural point of view over the years, as a result of adaptations made in the software because of changing system requirements. Parts of the old software are nevertheless still being used in new product lines. To make changes in that software, like adding features, it is imperative to first adapt the software to accommodate those changes. Architecture improvement of existing software is therefore becoming more and more important.
This paper describes a two-phase process for software architecture improvement, which is the synthesis of two research areas: the architecture visualisation and analysis area of Philips Research, and the transformation engines and renovation factories area of the University of Amsterdam. Software architecture transformation plays an important role, and is to our knowledge a new research topic. Phase one of the process is based on Relation Partition Algebra (RPA). By lifting the information to higher levels of abstraction and calculating metrics over the system, all kinds of quality aspects can be investigated. Phase two is based on formal transformation techniques on abstract syntax trees. The software architecture improvement process allows for a fast feedback loop on results, without the need to deal with the complete software and without any interference with the normal development process.
Keywords: software architecture, software recovery, software rearchitecting, software architecture transformation
1 Introduction
Royal Philips Electronics N.V. is a world-wide company that develops low-volume professional systems (such as communication systems and medical systems) and high-volume consumer electronics systems (like digital set-top boxes and television sets). Software plays an increasingly important role in all these systems.
In the domain of high-volume electronics the point has been reached at which it is no longer possible to develop each new product from scratch. The software architecture of new products is of great importance with respect to satisfying the demands for increasing functionality with decreasing time-to-market. Design for reuse and open architectures are of the utmost importance with respect to software architectures for product lines [BCK98].
In the domain of professional systems this turning point was already reached more than ten years ago. At the time when these large software systems were developed, most of the current software architecture techniques were not available. The old software is nevertheless still used in the development of new products. Current products are more and more feature-driven, and must therefore meet high requirements with respect to the flexibility and maintainability of the software.
Since we want to accommodate future changes in the software in both domains, there is a need for software architecture improvement. This paper describes a new software architecture improvement process that combines two research areas.
The main topic of this paper is the description of a two-phase process for recovering and improving software architectures, with a clear distinction between architecture impact analysis (phase one) and software architecture transformations (phase two). Architecture impact analysis uses a model based on Relation Partition Algebra (RPA [FO94,FKO98,FO99,FK99]). Software architecture transformations use formal transformation techniques, and aim at modifying the software to meet the new architecture requirements [BKV96,BSV97,SV98,BKV98,DKV99,SV99a,SV99b,SV99c,SV99d].
The paper is structured as follows. In Section 2 a general description of the process for software architecture improvement is given. Section 3 describes an example to illustrate this process. In Section 4 issues related to architecture impact analysis are discussed. Section 5 focuses on the software architecture transformations and describes ideas for a set of basic transformations that are of interest for these kinds of software architecture improvements. Finally, related work is described and some conclusions are given.
更多软考资料请访问:考试吧软件水平考试栏目
希望与更多网友交流,请进入考试吧软件水平考试论坛
北京 | 天津 | 上海 | 江苏 | 山东 |
安徽 | 浙江 | 江西 | 福建 | 深圳 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |