七、递归
递归算法通常具有这样的特征:为求解规模为N的问题,设法将它分解成一些规模较小的问题,然后从这些较小问题的解能方便地构造出题目所需的解。而这些规模较小的问题也采用同样的方法分解成规模更小的问题,通过规模更小的问题构造出规模校小的问题的解,如此不断的反复分解和综合,总能分解到最简单的能直接得到解的情况。
因此,在解递归算法的题目时,要注意以下几点:
1) 找到递归调用的结束条件或继续递归调用条件.
2) 想方设法将处理对象的规模缩小或元素减少.
3) 由于递归调用可理解为并列同名函数的多次调用,而函数调用的原则是一层一层调用,一层一层返回.因此,还要注意理解调用返回后的下一个语句的作用.在一些简单的递归算法中,往往不需要考虑递调用返回后的语句处理.而在一些复杂的递归算法中,则需要考虑递归调用返回后的语句处理和进一步的递归调用.
4) 在读递归程序或编写递归程序时,必须要牢记递归函数的作用,这样便于理解整个函数的功能和知道哪儿需要写上递归调用语句.当然,在解递归算法的题目时,也需要分清递归函数中的内部变量和外部变量.
表现形式:
●定义是递归的(二叉树,二叉排序树)
●存储结构是递归的(二叉树,链表,数组)
●由前两种形式得出的算法是递归的
一般流程: function(variable list(规模为N))
{ if(规模小,解已知) return 解;
else {
把问题分成若干个部分;
某些部分可直接得到解;
而另一部分(规模为N-1)的解递归得到;
}
}
例1:求一个链表里的最大元素.
大家有没想过这个问题用递归来做呢?
非递归方法大家应该都会哦?
Max(nodetype *h) {
nodetype *p;
nodetype *q; //存放含最大值的结点
Int max=0;
P=h;
While(p!=NULL){
if (max<p->data) {
max=p->data;
q=p;
}
p=p->next;
}
return q;
}
下面真经来了,嘻嘻嘻~~~
*max(nodetype *h) {
nodetype *temp;
temp=max(h->next);
if(h->data>temp->data)
return h;
else
return temp;
}
大家有空想想下面这个算法:求链表所有数据的平均值(我也没试过),不许偷懒,用递归试试哦!
递归程序员考试题目类型:1)就是链表的某些操作(比如上面的求平均值)
2)二叉树(遍历等)
例2.判断数组元素是否递增
int jidge(int a[],int n) {
if(n==1) return 1;
else
if(a[0]>a[1]) return 0;
else return jidge(a+1,n-1);
}
例3.求二叉树的高度(根据二叉树的递归性质:(左子树)根(右子树))
int depth(nodetype *root) {
if(root==NULL)
return 0;
else {
h1=depth(root->lch);
h2=depth(root->rch);
return max(h1,h2)+1;
}
}
自己想想求二叉树结点个数(与上例类似)
例4.已知中序遍历和后序遍历,求二叉树.
设一二叉树的:
中序 S:E D F B A G J H C I
^start1 ^j ^end1
后序 T:E F D B J H G I C A
^start2 ^end2
node *create(char *s,char *t, int start1,int start2,int end1,int end2)
{ if (start1>end1) return NULL; //回归条件
root=(node *)malloc(sizeof(node));
root->data=t[end2];
找到S中T[end2]的位置为 j
root->lch=create(S,T,s1,j-1,start1,j+start2-start1-1);
root->rch=create(S,T,j+1,end1,j+start2-start1,end2-1);
return root;
}
例5.组合问题
n 个数: (1,2,3,4,…n)求从中取r个数的所有组合.
设n=5,r=3;
递归思想:先固定一位 5 (从另四个数当中选二个)
5,4 (从另三个数当中选一个)
5,4,3 (从另二个数当中选零个)
即:n-2个数中取r-2个数的所有组合
…
程序:
void combire(int n,int r) {
for(k=n;k>=n+r-1;k--) {
a[r]=k;
if(r==0) 打印a数组(表示找到一个解);
else combire(n-1,r-1);
}
}
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] 下一页
转帖于:软件水平考试_考试吧- 推荐给朋友
- 收藏此页
·网络工程师资料:网络体系结构-软考网络类题解 (2008-4-25 14:33:38)
·计算机网络基础网络拓扑结构及优缺点分析 (2008-2-22 14:04:32)
·网络工程师必知:静态路由协议配置方法 (2008-2-22 14:03:39)
·计算机网络尼奎斯特 香农公式例题解析 (2008-2-22 14:02:35)
·软考复习:因特网IP的分类、寻址规则及子网掩码 (2008-2-22 13:57:21)