首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
16、单源最短路径
(1)Dijkstra 算法可以用来解决非负权重网络的单源点最短路径。
Dijkstra 算法的基本思想就是用贪心策略维护一棵最短路径生成树,先用dist[]数组维护一个最短路径,dist[v]表示起点 v0 与当前最短路径树中的顶点 v 的最短路径。选择下一个顶点时,我们找一条边
最短路径 dijsktra 算法模板:
#include
usingnamespace std;
constint maxint = 9999999;
constint maxn = 1010;
intdata[maxn][maxn];//data存放点点之间的距离,
intlowcost[maxn]; //lowcost存放点到start的距离, 从0开始存放
boolused[maxn];//标记点是否被选中
intn; //顶点的个数
voiddijkstra(int start)//初始点是start的dij算法
{
int i,j;
memset(used, 0, sizeof(used));
//init
for(i = 0; i < n; i++)
lowcost[i] = data[start][i];
used[start] = true;
lowcost[start] = 0;
for(i = 0; i < n-1; i++)
{
//choose min
int tempmin = maxint;
int choose;
for(j = 0; j < n; j++)
{
if(!used[j] && tempmin >lowcost[j])
{
choose = j;
tempmin = lowcost[j];
}
}
used[choose] = true;
//updata others
for(j = 0; j < n; j++)
{
if(!used[j] &&data[choose][j] < maxint && lowcost[choose]+data[choose][j] { lowcost[j] =lowcost[choose]+data[choose][j]; } } } } intmain() { int start , i , j; cin>>n; for(i = 0; i < n; i++) for(j = 0; j < n; j++)//输入顶点信息 { cin>>data[i][j]; } cin>>start; dijkstra(start); int min = 0; for(i = 0; i < n; i++) { cout< for(i=0;i { for(j=0;j a[i][j]=MAX; for(i=0;i a[i][i]=0; while(edge_amount--) { scanf("%d%d%d",&i,&j,&w); a[i][j]=w; } Bellman_Ford(0); for(i=0;i { printf("dist:%d\t",d[i]); printf("path: %d",P[i]); printf("\n"); } } return 0; }
北京 | 天津 | 上海 | 江苏 | 山东 |
安徽 | 浙江 | 江西 | 福建 | 深圳 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |