●歼灭难点训练
一、选择题
1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )
A.ab=0 B.a+b=0 C.a=b D.a2+b2=0
2.(★★★★)“a=1”是函数y=cos2ax-sin2ax的最小正周期为“π”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既非充分条件也不是必要条件
二、填空题
3.(★★★★)a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的_________.
4.(★★★★)命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的__________条件.
三、解答题
5.(★★★★★)设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α、β均大于1的什么条件?
6.(★★★★★)已知数列{an}、{bn}满足:bn= ,求证:数列{an}成等差数列的充要条件是数列{bn}也是等差数列.
7.(★★★★★)已知抛物线C:y=-x2+mx-1和点A(3,0),B(0,3),求抛物线C与线段AB有两个不同交点的充要条件.
8.(★★★★★)p:-2 参考答案 难点磁场 证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4. 设f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线. 又|α|<2,|β|<2,∴f(±2)>0. 即有 4+b>2a>-(4+b) 又|b|<4 4+b>0 2|a|<4+b (2)必要性: 由2|a|<4+b f(±2)>0且f(x)的图象是开口向上的抛物线. ∴方程f(x)=0的两根α,β同在(-2,2)内或无实根. ∵α,β是方程f(x)=0的实根, ∴α,β同在(-2,2)内,即|α|<2且|β|<2. 歼灭难点训练 一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b) =-(x|x+a|+b)=-f(x). ∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)= (-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0. ∴a2+b2=0是f(x)为奇函数的必要条件. 答案:D 2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件. 答案:A 二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1与l2的A1∶A2=B1∶B2=1∶1,而C1∶C2=9∶4≠1,即C1≠C2,∴a=3 l1∥l2. 答案:充要条件 4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立. 答案:充分不必要 三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是p: 结论是q: (注意p中a、b满足的前提是Δ=a2-4b≥0) (1)由 ,得a=α+β>2,b=αβ>1,∴q p (2)为证明p q,可以举出反例:取α=4,β= ,它满足a=α+β=4+ >2,b=αβ=4× =2>1,但q不成立. 综上讨论可知a>2,b>1是α>1,β>1的必要但不充分条件. 6.证明:①必要性: 设{an}成等差数列,公差为d,∵{an}成等差数列. 从而bn+1-bn=a1+n· d-a1-(n-1) d= d为常数. 故{bn}是等差数列,公差为 d. ②充分性: 设{bn}是等差数列,公差为d′,则bn=(n-1)d′ ∵bn(1+2+…+n)=a1+2a2+…+nan ① bn-1(1+2+…+n-1)=a1+2a2+…+(n-1)an ② ①-②得:nan= bn-1 ∴an= ,从而得an+1-an= d′为常数,故{an}是等差数列. 综上所述,数列{an}成等差数列的充要条件是数列{bn}也是等差数列. 7.解:①必要性: 由已知得,线段AB的方程为y=-x+3(0≤x≤3) 由于抛物线C和线段AB有两个不同的交点, 所以方程组 *有两个不同的实数解. 消元得:x2-(m+1)x+4=0(0≤x≤3) 设f(x)=x2-(m+1)x+4,则有 ②充分性: 当3 x1= >0 ∴方程x2-(m+1)x+4=0有两个不等的实根x1,x2,且0 因此,抛物线y=-x2+mx-1和线段AB有两个不同交点的充要条件3 8.解:若关于x的方程x2+mx+n=0有2个小于1的正根,设为x1,x2. 则0 根据韦达定理: 有-2 反之,取m=- <0 方程x2+mx+n=0无实根,所以p q 综上所述,p是q的必要不充分条件. 相关推荐:
美好明天 在线课程 |
科目 | 主讲 老师 |
直播 试听课 |
教材 精讲班 教材精讲班 15课时
(1)对教材中所有知识点进行系统讲解 (2)根据近年考试规律对知识点进行重要程度标注(必考/常考/可考或1星/2星/3星等,不同科目略有差异) (3)核心知识点配备模拟题和历年真题进行实战练习 |
重要考点 密训班 重要考点密训班 5课时
(1)总结、提炼重要、核心必考考点,剔除非重要考点 (2)配套密训试题,将考点变考分 |
VIP密训 密卷班 教学时长:3课时
(1)逐题精讲3套核心试卷,列出涉及考点,学会利用知识点答题 预测考试重点方向,巩固答题技巧 强化解题思维 构建成套解题思维 (2)历年真题题库:逐题配备文字、视频解析,了解最新命题趋势,实战训练巩固知识点 |
考前5页 A4纸 考前5页A4纸密押:核心必考点精华集合,
5星重要,是老师们呕心沥血总结出来的, 全部背会,确定再次提分,你懂得! |
报名 |
---|---|---|---|---|---|---|---|---|
下载 | 下载 | 下载 | 下载 | |||||
课程安排 | 15课时/科 | 5课时/科 | 3套卷/科 | 5页纸/科 | ||||
专升本 | 政治 | 大雄 | 报名 | |||||
英语(专升本) | Oriana | 报名 | ||||||
高等数学(一) | 开耕 | 报名 | ||||||
高等数学(二) | 开耕 | 报名 | ||||||
民法 | 肖潇 | 报名 | ||||||
大学语文 | 小元 | 报名 | ||||||
教育理论 | 五月 | 报名 | ||||||
医学综合 | 梦茹,鸿儒 | 报名 | ||||||
艺术概论 | 猗猗 | 报名 | ||||||
高起点专本 | 语文 | 小元 | 报名 | |||||
英语(高起点) | Oriana | 报名 | ||||||
数学(理) | 开耕 | 报名 | ||||||
数学(文) | 开耕 | 报名 |
在线课程 |
AI私塾班
56%学员选择 |
签约保障班
38%学员选择 |
基础提升班
6%学员选择 |
||
适合学员 | ①零基础/多次考试未通过 ②需要全面系统学习 ③自学能力不足/喜欢陪伴式学习(需要全程督学/希望名师领学的学员) ④希望一次顺利录取 |
①首次报考/往年裸考 ②备考时间紧张/答题无思路 ③需要快速提分和高效掌握考试重难点的学员 ④实务较弱,需要提升做题能力 |
①自学能力强 ②能根据老师讲课内容自主总结考试重点 |
---|
在线课程 |
AI私塾班
56%学员选择 |
签约保障班
38%学员选择 |
基础提升班
6%学员选择 |
||
适合学员 | ①零基础/多次考试未通过 ②需要全面系统学习 ③自学能力不足/喜欢陪伴式学习(需要全程督学/希望名师领学的学员) ④希望一次顺利录取 |
①首次报考/往年裸考 ②备考时间紧张/答题无思路 ③需要快速提分和高效掌握考试重难点的学员 ④实务较弱,需要提升做题能力 |
①自学能力强 ②能根据老师讲课内容自主总结考试重点 |
||
---|---|---|---|---|---|
VIP三位一体课程体系 | 学 | 教材精讲班 | |||
重要考点密训班 | |||||
练 | VIP密训密卷班 | ||||
背 | 考前5页A4纸 | ||||
VIP旗舰服务 | 人工助学服务 | 班主任微信1对1 | |||
授课老师微信1对1 | |||||
节点严控 | 考试倒计时提醒 | ||||
VIP直播日历 | |||||
上课提醒 | |||||
便捷系统 | 课程视频、音频、讲义下载 | ||||
手机、平板、电脑多平台听课 | |||||
无限次离线回放 | |||||
VIP配套资料 | 电子资料 | 课程讲义 | |||
3年真题集锦 | |||||
考前5页纸 | |||||
VIP配套保障 | 1年有效期! 有效期结束,未达到录取线申请退费或终身免费学! |
1年有效期! 有效期结束,考试不过科目免费重学1年! |
1年有效期! | ||
套餐价格 | 全科:¥3980 | 全科:¥2680 单科:¥980 |
全科:¥1680全科 单科:¥580 |