难点6 函数值域及求法
函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.
●难点磁场
(★★★★★)设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ).
(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M.
(2)当m∈M时,求函数f(x)的最小值.
(3)求证:对每个m∈M,函数f(x)的最小值都不小于1.
●案例探究
[例1]设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[ ],那么λ为何值时,能使宣传画所用纸张面积最小?
命题意图:本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力,属★★★★★级题目.
知识依托:主要依据函数概念、奇偶性和最小值等基础知识.
错解分析:证明S(λ)在区间[ ]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决.
技巧与方法:本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决.
解:设画面高为x cm,宽为λx cm,则λx2=4840,设纸张面积为S cm2,则S=(x+16)(λx+10)=λx2+(16λ+10)x+160,将x= 代入上式得:S=5000+44 (8 + ),当8 = ,即λ= <1)时S取得最小值.此时高:x= =88 cm,宽:λx= ×88=55 cm.
如果λ∈[ ]可设 ≤λ1<λ2≤ ,则由S的表达式得:
又 ≥ ,故8- >0,
∴S(λ1)-S(λ2)<0,∴S(λ)在区间[ ]内单调递增.
从而对于λ∈[ ],当λ= 时,S(λ)取得最小值.
答:画面高为88 cm,宽为55 cm时,所用纸张面积最小.如果要求λ∈[ ],当λ= 时,所用纸张面积最小.
[例2]已知函数f(x)= ,x∈[1,+∞ (1)当a= 时,求函数f(x)的最小值.
(2)若对任意x∈[1,+∞ ,f(x)>0恒成立,试求实数a的取值范围.
命题意图:本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力,属★★★★级题目.
知识依托:本题主要通过求f(x)的最值问题来求a的取值范围,体现了转化的思想与分类讨论的思想.
错解分析:考生不易考虑把求a的取值范围的问题转化为函数的最值问题来解决.
技巧与方法:解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得.
(1)解:当a= 时,f(x)=x+ +2
∵f(x)在区间[1,+∞ 上为增函数,
∴f(x)在区间[1,+∞ 上的最小值为f(1)= .
(2)解法一:在区间[1,+∞ 上,f(x)= >0恒成立 x2+2x+a>0恒成立.
设y=x2+2x+a,x∈[1,+∞ ∵y=x2+2x+a=(x+1)2+a-1递增,
∴当x=1时,ymin=3+a,当且仅当ymin=3+a>0时,函数f(x)>0恒成立,故a>-3.
解法二:f(x)=x+ +2,x∈[1,+∞ 当a≥0时,函数f(x)的值恒为正;
当a<0时,函数f(x)递增,故当x=1时,f(x)min=3+a,
当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>-3.
●锦囊妙计
本难点所涉及的问题及解决的方法主要有:
(1)求函数的值域
此类问题主要利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.无论用什么方法求函数的值域,都必须考虑函数的定义域.
(2)函数的综合性题目
此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目.
此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.
(3)运用函数的值域解决实际问题
此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题要求考生具有较强的分析能力和数学建模能力.
相关推荐:
美好明天 在线课程 |
科目 | 主讲 老师 |
直播 试听课 |
教材 精讲班 教材精讲班 15课时
(1)对教材中所有知识点进行系统讲解 (2)根据近年考试规律对知识点进行重要程度标注(必考/常考/可考或1星/2星/3星等,不同科目略有差异) (3)核心知识点配备模拟题和历年真题进行实战练习 |
重要考点 密训班 重要考点密训班 5课时
(1)总结、提炼重要、核心必考考点,剔除非重要考点 (2)配套密训试题,将考点变考分 |
VIP密训 密卷班 教学时长:3课时
(1)逐题精讲3套核心试卷,列出涉及考点,学会利用知识点答题 预测考试重点方向,巩固答题技巧 强化解题思维 构建成套解题思维 (2)历年真题题库:逐题配备文字、视频解析,了解最新命题趋势,实战训练巩固知识点 |
考前5页 A4纸 考前5页A4纸密押:核心必考点精华集合,
5星重要,是老师们呕心沥血总结出来的, 全部背会,确定再次提分,你懂得! |
报名 |
---|---|---|---|---|---|---|---|---|
下载 | 下载 | 下载 | 下载 | |||||
课程安排 | 15课时/科 | 5课时/科 | 3套卷/科 | 5页纸/科 | ||||
专升本 | 政治 | 大雄 | 报名 | |||||
英语(专升本) | Oriana | 报名 | ||||||
高等数学(一) | 开耕 | 报名 | ||||||
高等数学(二) | 开耕 | 报名 | ||||||
民法 | 肖潇 | 报名 | ||||||
大学语文 | 小元 | 报名 | ||||||
教育理论 | 五月 | 报名 | ||||||
医学综合 | 梦茹,鸿儒 | 报名 | ||||||
艺术概论 | 猗猗 | 报名 | ||||||
高起点专本 | 语文 | 小元 | 报名 | |||||
英语(高起点) | Oriana | 报名 | ||||||
数学(理) | 开耕 | 报名 | ||||||
数学(文) | 开耕 | 报名 |
在线课程 |
AI私塾班
56%学员选择 |
签约保障班
38%学员选择 |
基础提升班
6%学员选择 |
||
适合学员 | ①零基础/多次考试未通过 ②需要全面系统学习 ③自学能力不足/喜欢陪伴式学习(需要全程督学/希望名师领学的学员) ④希望一次顺利录取 |
①首次报考/往年裸考 ②备考时间紧张/答题无思路 ③需要快速提分和高效掌握考试重难点的学员 ④实务较弱,需要提升做题能力 |
①自学能力强 ②能根据老师讲课内容自主总结考试重点 |
---|
在线课程 |
AI私塾班
56%学员选择 |
签约保障班
38%学员选择 |
基础提升班
6%学员选择 |
||
适合学员 | ①零基础/多次考试未通过 ②需要全面系统学习 ③自学能力不足/喜欢陪伴式学习(需要全程督学/希望名师领学的学员) ④希望一次顺利录取 |
①首次报考/往年裸考 ②备考时间紧张/答题无思路 ③需要快速提分和高效掌握考试重难点的学员 ④实务较弱,需要提升做题能力 |
①自学能力强 ②能根据老师讲课内容自主总结考试重点 |
||
---|---|---|---|---|---|
VIP三位一体课程体系 | 学 | 教材精讲班 | |||
重要考点密训班 | |||||
练 | VIP密训密卷班 | ||||
背 | 考前5页A4纸 | ||||
VIP旗舰服务 | 人工助学服务 | 班主任微信1对1 | |||
授课老师微信1对1 | |||||
节点严控 | 考试倒计时提醒 | ||||
VIP直播日历 | |||||
上课提醒 | |||||
便捷系统 | 课程视频、音频、讲义下载 | ||||
手机、平板、电脑多平台听课 | |||||
无限次离线回放 | |||||
VIP配套资料 | 电子资料 | 课程讲义 | |||
3年真题集锦 | |||||
考前5页纸 | |||||
VIP配套保障 | 1年有效期! 有效期结束,未达到录取线申请退费或终身免费学! |
1年有效期! 有效期结束,考试不过科目免费重学1年! |
1年有效期! | ||
套餐价格 | 全科:¥3980 | 全科:¥2680 单科:¥980 |
全科:¥1680全科 单科:¥580 |