首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试
MPA考试 | 中科院
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT
新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证
华为认证 | Java认证
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格
报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师
人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平
驾驶员 | 网络编辑
卫生资格 | 执业医师 | 执业药师 | 执业护士
会计从业资格考试会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师
注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师
质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师
设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师
城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏
考研_考试吧考研_首发2011考研成绩查询
考研网校 模拟考场 考研资讯 复习指导 历年真题 模拟试题 经验 考研查分 考研复试 考研调剂 论坛 短信提醒
考研英语| 资料 真题 模拟题  考研政治| 资料 真题 模拟题  考研数学| 资料 真题 模拟题  专业课| 资料 真题 模拟题  在职研究生
您现在的位置: 考试吧(Exam8.com) > 考研 > 考研复习指导 > 考研数学复习指导 > 综合辅导 > 正文

名家指导:考研数学矩阵乘法复习指导

本文提供了考研数学矩阵乘法复习指导。

  欢迎进入:2010考研课程免费试听  更多信息请访问:考研 论坛 

  尽管矩阵乘法不满足交换律。但是,矩阵乘法在多方面的成功应用,令人感到很惬意。

  1.若A,B都是n阶方阵,则|AB|=|A||B|。

  我们知道,|A+B|难解。相比之下,乘积算法复杂得多,而积矩阵行列式公式却如此简明,自然显示了矩阵乘法之成功。

  特别地,如果AB=BA=E,则称B是A的逆阵;或说A与B互逆。

  A*是A的代数余子式按行顺序转置排列成的。之所以这样做,就是恰好有(基本恒等式)AA*=A*A=|A|E,顺便有|A|≠0时,|AA*|=||A|E|,故|A*|=|A|的n-1次方。

  2.对矩阵实施三类初等变换,可以通过三类初等阵分别与矩阵相乘来实现。“左乘行变,右乘列变。”给理论讨论及应用计算机带来很大的方便。

  3.分块矩阵乘法,形式多样,内函丰富。

  要分块矩阵乘法可行,必须要在“宏观”与“微观”两方面都确保可乘。

  AB=A(b1,b2,——,bs)=(Ab1,Ab2,——,Abs)

  宏观可乘:把各分块看成一个元素,满足阶数规则(1×1)(1×s)=(1×s).

  微观可乘:相乘的子块都满足阶数规则。(m×n)(n×1)=(m×1),具体如,Ab1是一个列向量

  AB=0的基本推理

  AB=0,即(Ab1,Ab2,——,Abs)=(0,0,——,0)

  →B的每一个列向量都是方程组Ax=0的解。

  →B的列向量组可以被方程组Ax=0的基础解系线性表示。

  →r(B)≤方程组Ax=0的解集的秩=n-r(A)→r(B)+r(A)≤n.

  例:已知(n维)列向量组a1,a2,——,ak线性无关,A是m×n阶矩阵,且秩r(A)=n,试证明,Aa1,Aa2,——,Aak线性无关

  分析设有一组数c1,c2,——,ck,使得c1Aa1+c2Aa2+——+ckAak=0.

  即A(c1a1+c2a2+——+ckak)=0.

  这说明c1a1+c2a2+——+ckak是方程组Ax=0的解。

  但是,方程组Ax=0的解集的秩=n-r(A)=0,方程组Ax=0仅有0解。

  故c1a1+c2a2+——+ckak=0由已知线性无关性得常数皆为0。

  相关推荐:2009考研数学145分得主经验谈:复习用书篇
       九月数学复习:提高分析综合问题、实际问题
       东南大学高分得主:2010考研数学复习全攻略
文章责编:gongxia  
看了本文的网友还看了
文章搜索
任汝芬老师
在线名师:任汝芬老师
   著名政治教育专家;研究生、博士生导师;中国国家人事人才培...[详细]
考研栏目导航
版权声明:如果考研网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本考研网内容,请注明出处。