不等式的证明问题是考试常考内容之一,也是很多同学的薄弱知识点,为了广大考生更好地掌握此类题型,老师根据自己的辅导经验,对不等式的一般证明方法进行了归纳总结,希望对同学们有所帮助。
不等式的证明方法主要有以下几种:
(1)利用函数的单调性:将不等式适当的变形,移项后一端为0,另一端为函数,判断单调性后将函数与端点处函数值进行比较,该方法通常能解决多数不等式的证明问题。
(2)如果出现同一函数在两点函数值的形式,则考虑使用拉格朗日中值定理,将识字进行适当的放缩。
(3)可以通过判断函数的凹凸性后结合函数的图形证明不等式;也可以讲函数其他点的函数值与函数的最大值或最小值比较,得到所证明的不等式。
(4)如果二阶或二阶以上可导,常用泰勒公式,将函数展开后进行恰当的放缩。
以上是证明不等式的一般原则,解题时要结合已知条件灵活选择证明方法,同学们可通过以下例题来体会以上方法。
【思路提示】欲证 ,只需证 ,如果设 ,注意到 ,故只需说明 单调增加,利用 判断单调性。
例4设 在 上二阶可导,且 ,其中 为非负常数,证明对任意 ,有 。
【思路提示】题设条件告知函数二阶可导,且函数与函数的二阶导数有界,应考虑使用泰勒公式证明。将函数作一阶泰勒展开,然后估计其一阶导数。
编辑推荐:
· | 2022考研复试联系导师有哪些注意事 | 04-28 |
· | 2022考研复试面试常见问题 | 04-28 |
· | 2022年考研复试面试回答提问方法有 | 04-28 |
· | 2022考研复试怎么缓解缓解焦虑心态 | 04-27 |
· | 2022年考研复试的诀窍介绍 | 04-27 |
· | 2022年考研复试英语如何准备 | 04-26 |
· | 2022年考研复试英语口语常见句式 | 04-26 |
· | 2022年考研复试的四个细节 | 04-26 |
· | 2022考研复试准备:与导师及时交流 | 04-26 |
· | 2022考研复试面试的综合技巧 | 04-26 |