首页 - 网校 - 万题库 - 美好明天 - 直播 - 导航
热点搜索
学员登录 | 用户名
密码
新学员
老学员
您现在的位置: 考试吧 > 考研 > 考研复习指导 > 考研数学复习指导 > 2022考研数学大纲 > 正文

2016考研数学大纲专题解析之一元积分

来源:跨考教育 2015-9-18 9:43:58 要考试,上考试吧! 考研万题库
2016考研数学大纲专题解析之一元积分,更多2016考研大纲、考研政治大纲 、考研英语大纲等,请关注考试吧考研网或搜索公众微信号“考试吧考研”。

考试吧独家策划:2016年考研大纲及解析专题热点文章 ※ 直播解析

  新考研大纲如约而至。对考生而言,关注点应从对考纲的关注转到如何更有效地复习上。笔者作为奋战在教学一线的数学老师,考虑到这阶段的同学已经历了基础阶段和暑期的复习,已具备一定基础,也对真题中的题型有一定了解,但未必形成知识体系,重难点也未必完全把握。所以,借助此次与广大考生交流的机会,跨考教育数学教研室刘玮宇老师梳理了高等数学中的重难点,以期给正在全力攀登的考生搭一把手。

专题四 一元积分

  一元积分包括三部分内容:不定积分、定积分和广义积分。下面逐一讨论。

  1. 不定积分

  不定积分主要考什么?概念、性质、计算?计算!下面就梳理一下不定积分的计算方法。该方法可总结为“一个基础两个方法”。所谓“一个基础”指:有理函数积分的处理方法;所谓“两个方法”指根式的处理方法和分部积分法。

  何谓有理函数积分?即被积函数为有理函数的积分。而有理函数即分子分母分别为n次和m次多项式的函数。有理函数积分是整个不定积分计算的基础,因为很多其他类型的积分(如指数有理式积分、三角有理式积分等)可化为有理函数积分。考试直接考有理函数积分的可能性不大,但可能间接考,也就是在计算过程中的某一步用到有理函数积分的处理方法。那如何处理?简单说就是在老旧危房的墙壁上我们经常看到的那个字——拆。如何拆?教材和较权威的辅导书上都有讨论,总结起来有三种情况:被积函数若含有x-a这种一次因子,则被积函数拆出一项A/(x-a),其中A为待定参数;若含有(x-a)^2这种二次因子,则被积函数拆出两项A/(x-a)+ B/(x-a)^2;若含有x^2+ax+b这种二次因子(该抛物线无零点),则被积函数拆出一项(Ax+B)/(x^2+ax+b)。

  接下来,讨论根式的处理。若被积函数含有根号,我们自然想到去根号。如何去根号取决于根号下面表达式的具体形式:如果根号下面是关于x的一次式子,那么整体令成t,就能达到去根号的效果;如果根号下面是关于x的二次式子,要去根号,我们可以考虑通过换元让根号下面整体出现一个平方,这时要借助一些三角恒等式,如根号下面是1-x^2,我们令x=sint就能达到效果;如果根号下面是其他形式,基本思路也是去根号,可类似上面考虑。当然,这里的“换元”更严格的表述是不定积分的换元,注意不光要把被积函数中的变量换掉,还要把微分号中的变量也换成新的积分变量。

  说着说着就说到了考试的重点内容分部积分了。首先要把分部积分的公式弄清楚,可以这样形式地记忆:被积函数是两个函数的乘积,先把一个函数凑微分(从形式上看就是把这个函数拿到微分号中),进一步等于新的积分式中的两个函数相乘减去两个函数交换位置。

  接下来要处理好“何时用”和“怎么用”这两个问题。数学上的道理和生活中的道理是相通的:打游戏时想放大招,若把握不好这两个问题,那就可能出现不该放招时放了大招而该放大招时却没有大招了,也可能出现想放大招却放不出的囧境;打篮球时要用好自己的身体,如果这两个问题处理不好,就可能在不恰当的时间出现在不合适的位置,想为球队做贡献却总是添乱。那么什么时候想到用分部积分法呢?有两个信号(满足其一即可):1)被积函数是不同类型函数之积;2)被积函数含有对数函数、反三角函数和多项式等求导后比自己简单的函数。

  如果确定用分部积分法,那么u(x)和v'(x)的选取是个关键问题。如何选?观察分部积分公式,不难发现等号左边有u(x),而等号右边会出现u'(x),说明求导后比自己简单的函数适合作为u(x),如lnx,arctanx和多项式等;另外,等号左边有v'(x),第一步需要把v'(x)拿到微分号中,说明容易凑微分的函数适合作为v'(x),如sinx,exp(x)等。

  考试考不定积分计算主要考察根式的处理和分部积分法。有多种小的类型,如“一箭双雕”型(用变量代换这支箭射下根号和反三角函数这两只雕),“相互抵消”型(两项单独用分部积分难以算出结果,但在计算过程中这两项能抵消)等。需大量练习才能达到熟练的要求。

  2. 定积分

  先说定积分的定义。几何意义是曲边梯形面积的代数和。特殊情况下(区间取[0,1],等分,在每个小区间上取右端点处的函数值)的定积分定义可作为一个公式求一种特殊类型的极限——n项分母互不相同的分式的和的极限。此外,数一数二同学还需掌握微元法的基本思想。

  再说定积分的性质。定积分的大部分性质在计算过程中经常用到,在此不必赘述。值得一提的是比较定理。该定理告诉我们,比较定积分的大小,在保证积分区间相同的情况下,实质上就是比较被积函数的大小。考试考定积分的比较本质上都是在考比较定理。

  微积分基本定理从本质上解决了定积分的计算问题。根据牛顿—莱布尼兹公式,求定积分在被积函数连续的情况下只需求出被积函数的一个原函数,再计算其函数值之差即可。

  下面我们说说定积分有什么特殊性质。首先是对称区间积分,我们比较熟悉的是被积函数是奇函数或偶函数时的性质,此外真题中出现了一种新的情形:被积函数有一个因子是偶函数且其余部分有特殊性质,也有相应的结论。可以记住这个结论,用它来做同种类型的题目。接着就是做变量代换后区间不变的情况。如被积函数为f(sinx),积分区间为0到pi/2,若做变量代换:x= pi/2-t可得到另一个积分,从形式上看,相当于把原积分的sin换成了cos。这也可以为我们解题提供思路。此外,就是定积分的分部积分法。这里有若干种小的类型,如被积函数含有抽象函数的导函数f'(x), f'' (x)等,被积函数含有变限积分均可考虑定积分的分部积分法。另外,作为全面复习,“点火公式”(被积函数为sinx的n次幂,积分区间为0到pi/2)也不应放过。

  3. 广义积分

  广义积分不少同学不熟悉,实际上考研要求很明确:会用定义判断广义积分的敛散性;会计算广义积分。

  定积分要存在需满足两条:积分区间有限且被积函数有界。破坏这些条件得到的积分称为广义积分。具体说来,无穷区间的广义积分有三种:积分上限为无穷,积分下限为无穷,积分上、下限均为无穷;无界函数的广义积分(也称瑕积分,因为被积函数在积分区间无界,在区间内部或端点处一定有让被积函数无界的点,这种“不好”的点我们称为瑕点)也有三种:瑕点在区间的左端点,瑕点在区间的右端点,瑕点在区间的内部。

  广义积分收敛发散的定义的形式看起来较复杂,可以按照如下方式理解:把广义积分按照定积分的牛顿-莱布尼兹公式算出来(把正负无穷带入看成取极限,瑕点处的函数值也看成取极限),如果结果是个数,则广义积分收敛;如果不存在,则广义积分发散。

  这里要特别注意两类积分:积分上、下限均为无穷的广义积分和瑕点在区间的内部的广义积分。前者在用牛顿-莱布尼兹公式之前,要用0把积分区间拆成两个区间,进而把积分拆成两个积分,然后运用前面的方法讨论这两个积分的敛散性,原积分收敛的充要条件是这两个积分都收敛;后者要用瑕点把积分区间拆成两个区间,进而把积分拆成两个积分,然后运用前面的方法讨论这两个积分的敛散性,原积分收敛的充要条件是这两个积分都收敛。

  广义积分的计算就是定积分加取极限。如果是上文提到的那两种特殊类型的广义积分,先拆成两个积分,再计算即可。

扫描二维码关注"566考研"微信,第一时间获取2016考研大纲及解析

考研题库手机题库下载】 | 微信搜索"566考研"

  编辑推荐:

  考试吧独家策划:2016年考研大纲及解析专题微信提醒

  直播解析:考试吧权威名师直播解析2016考研大纲

  2016年全国硕士研究生招生考试公告报名提醒

  考研万题库 考研包过必杀器!科学包过,懒人必备!

  考试吧策划:2016年考研报考指南专题

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
考研英语一
共计364课时
讲义已上传
53214人在学
考研英语二
共计30课时
讲义已上传
5495人在学
考研数学一
共计71课时
讲义已上传
5100人在学
考研数学二
共计46课时
讲义已上传
3684人在学
考研数学三
共计41课时
讲义已上传
4483人在学
推荐使用万题库APP学习
扫一扫,下载万题库
手机学习,复习效率提升50%!
版权声明:如果考研网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本考研网内容,请注明出处。
官方
微信
扫描关注考研微信
领《大数据宝典》
下载
APP
下载万题库
领精选6套卷
万题库
微信小程序
帮助
中心
文章责编:songxiaoxuan