首页 - 网校 - 万题库 - 美好明天 - 直播 - 导航
热点搜索
学员登录 | 用户名
密码
新学员
老学员
您现在的位置: 考试吧 > 考研 > 考研复习指导 > 考研数学复习指导 > 2022考研数学大纲 > 正文

2021考研数学三大纲(高数部分)考试内容和要求变化分析

来源:跨考教育 2020-9-10 14:10:00 要考试,上考试吧! 考研万题库
2021考研数学三大纲(高数部分)考试内容和要求变化分析,更多2021考研大纲、考研政治大纲 、考研英语大纲、考研专业课大纲等,请关注考试吧考研网或搜索公众微信号“万题库考研”!

2021年考研大纲及解析热点文章 ※ 关注微信 ※ 题库下载

高等数学
节标题 2020大纲 2021大纲 变动情况
一、函数、极限、连续


函数、极限、连续
5.了解数列极限和 函数极限(包括左 极限与右极限)的 概念 6.理解极限的概念,理解
函数左极限与右极限的 概念以及函数极限存在 与左极限、右极限之间的 关系

“了解数列极限和函数极限的概 念”变为“理解数列极限和函数极 限的概念”,提高对概念的要求
二、一元函数微分学
一元函数微分学 5.理解罗尔(Rolle
定理、拉格朗日
(Lagrange)中值 定理,了解泰勒
(Taylor)定理、柯 西(Cauchy)中值 定理,掌握这四个定 理的简单应用

5.理解并会用罗尔
(Rolle)定理、拉格朗 日(Lagrange)中值定 理和泰勒(Taylor)定理, 了解并会用柯西
(Cauchy)中值定理


“了解泰勒(Taylor)定理”变为 “理解并会用泰勒(Taylor)定 理”,加强了对泰勒定理的要求

6.会用洛必达法则求 极限

6.掌握用洛必达法则求 未定式极限的方法
“会用洛必达法则求极限”变为
“掌握用洛必达法则求未定式极 限的方法”,增加对洛必达求未定 式极限的要求
8.会用导数判断函
数图形的凹凸性
(注:在区间 (a, b)

内,设函数 f ( x)具 有二阶导数.当
f ¢¢ ( x ) > 0 时,

f ( x)的图形是凹 的;当 f ¢¢ ( x ) < 0
时, f ( x)的图形是
凸的),会求函数图 形的拐点和渐近线 9.会描绘简单函数 的图形


8.会用导数判断函数图 形的凹凸性(注:在区间
(a, b)内,设函数 f ( x)具 有二阶导数.当
f ¢¢( x) > 0 时,f ( x)的图 形是凹的;当 f ¢¢( x) < 0
时, f ( x)的图形是凸
的),会求函数图形的拐 点以及水平、铅直和斜渐 近线,会描绘函数的图形
“会描绘简单函数的图形”变为 “会描绘函数的图形”,对函数图 形的考查不再局限于简单图形
三、一元函数积分学



一元函数积分学

4.了解反常积分的 概念,会计算反常 积分
4.理解反常积分的概念, 了解反常积分收敛的比 较判别法,会计算反常积 分 1“. 了解反常积分的概念”变为“理
解反常积分的概念”,加强对概念 的要求 2.增加“了解反常积分收敛的比较 判别法”的要求
四、多元函数微积分学
多元函数微积分学 3.了解多元函数偏导数与全微分的概 念,会求多元复合 函数一阶、二阶偏 导数,会求全微分, 会求多元隐函数的 偏导数 4.了解多元函数极 值与条件极值的概 念,掌握多元函数 极值存在的必要条 件,了解二元函数 极值存在的充分条 件,会求二元函数 的极值,会用拉格 朗日乘数法求条件 极值,会求简单多 元函数的最大值和 最小值,并会解决 简单的应用问题


3.了解多元函数偏导数 与全微分的概念,会求多 元复合函数,一阶、二阶 偏导数,会求全微分,了 解隐函数存在定理,会求 多元隐函数的偏导数 4.了解多元函数极值与 条件极值的概念,掌握多 元函数极值存在的必要 条件,了解二元函数极值 存在的充分条件,会求二 元函数的极值,会用拉格 朗日乘数法求条件极值, 会求简单多元函数的最 大值和最小值,并会解决 一些简单的应用问题
增加“了解隐函数存在定理”的考 试要求
5.了解二重积分的概念与基本性质, 掌握二重积分的计 算方法(直角坐标、 极坐标),了解无 界区域上较简单的 反常二重积分并会 计算 5.理解二重积分的概念,了解二重积分的基本性 质,了解二重积分的中值 定理,掌握二重积分的计 算方法(直角坐标、极坐 标),了解无界区域上较 简单的反常二重积分并 会计算 1“. 了解二重积分的概念”变为“理 解二重积分的概念”,加强对概念 的要求 2.增加“了解二重积分的中值定 理”的考试要求
五、无穷级数
无穷级数 1.了解级数的收敛与发散、收敛级数 的和的概念 2.了解级数的基本 性质及级数收敛的 必要条件,掌握几 何级数及 p 级数的 收敛与发散的条件,掌握正项级数
收敛性的比较判别 法和比值判别法. 3.了解任意项级数 绝对收敛与条件收 敛的概念以及绝对 收敛与收敛的关 系,了解交错级数 的莱布尼茨判别法 4.会求幂级数的收 敛半径、收敛区间 及收敛域 5.了解幂级数在其 收敛区间内的基本 性质(和函数的连 续性、逐项求导和 逐项积分),会求 简单幂级数在其收 敛区间内的和函数6.了解 ex ,sin x cos x , ln (1+ x)
与 (1+ x)a 麦克劳
林公式(Maclaurin 展开式
1.理解常数项级数收敛、发散以及收敛级数的和 的概念,掌握级数的基本 性质及收敛的必要条件 2.掌握几何级数及 p 级 数的收敛与发散的条件 3.掌握正项级数收敛性 的比较判别法和比值判别法,会用根值判别法
4.掌握交错级数的莱布 尼茨判别法 5.了解任意项级数绝对 收敛与条件收敛的概念 以及绝对收敛与收敛的 关系 6.理解幂级数收敛半径 的概念,并掌握幂级数的 收敛半径、收敛区间及收 敛域的求法 7.了解幂级数在其收敛 区间内的基本性质(和函 数的连续性、逐项求导和 逐项积分),会求一些幂 级数在其收敛区间内的 和函数,并会由此求出某 些数项级数的和8.掌握 ex , sin x ,
cos x , ln (1+ x) 与
(1+ x)a 麦克劳林公式
(Maclaurin)展开式, 会用它们将一些简单函 数间接展开为幂级数
1.“了解级数的收敛与发散、收敛级数的和的概念”变为“理解常数 项级数收敛、发散以及收敛级数的 和的概念”,加强对概念的要求 2“. 了解级数的基本性质及级数收 敛的必要条件”变为“掌握级数的 基本性质及收敛的必要条件”,提 高了考试要求3.增加“会用根值判别法”的考试
要求
4“. 了解交错级数的莱布尼茨判别 法”变为“掌握交错级数的莱布尼 茨判别法”,提高考试要求 5.“会求幂级数的收敛半径、收敛 区间及收敛域”变为“理解幂级数 收敛半径的概念,并掌握幂级数的 收敛半径、收敛区间及收敛域的求 法”,提高考试要求
6“. 会求简单幂级数在其收敛区间 内的和函数”变为“会求一些幂级 数在其收敛区间内的和函数,并会 由此求出某些数项级数的和”,不 再局限于简单幂级数7.“了解 ex , sin x , cos x ,
ln (1+ x) 与 (1+ x)a 麦克劳林 公式(Maclaurin)展开式”变为“掌握 ex , sin x , cos x ,
ln (1+ x) 与 (1+ x)a 麦克劳林公式(Maclaurin)展开式,会用 它们将一些简单函数间接展开为 幂级数”,进一步提高了考试要求
六、常微分方程与差分方程
常微分方程与差分 方程
3.会解二阶常系数 齐次线性微分方程 4.了解线性微分方 程解的性质及解的 结构定理,会解自 由项为多项式、指 数函数、正弦函数、 余弦函数的二阶常 系数非齐次线性微 分方程

5.理解线性微分方程解 的性质及解的结构 6.掌握二阶常系数齐次 线性微分方程的解法,并 会解某些高于二阶的常 系数齐次线性微分方程 7.会解自由项为多项式、 指数函数、正弦函数、余 弦函数以及它们的和与 积的二阶常系数非齐次 线性微分方程
1“. 了解线性微分方程解的性质及
解的结构定理”变为“理解线性微 分方程解的性质及解的结构”,加 强对概念的要求
2“. 会解二阶常系数齐次线性微分 方程”变为“掌握二阶常系数齐次 线性微分方程的解法,并会解某些 高于二阶的常系数齐次线性微分 方程” 3.增加对“自由项为多项式、指数 函数、正弦函数、余弦函数的和与 积的二阶常系数非齐次线性微分 方程”的要求

 

扫描/长按二维码关注获取考研大纲
获取2021考研大纲
获取2021考研报名时间
获取2套仿真内部资料
获取考研历年真题答案

考研万题库下载微信搜索"万题库考研"

  编辑推荐:

  2021年考研新大纲及解析专题 ※ 微信提醒

  2007-2020年考研真题及答案|解析|估分|下载(各科)

  考研万题库 科学通过,懒人必备!

  考试吧策划:2021年考研报考指南专题

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
考研英语一
共计364课时
讲义已上传
53214人在学
考研英语二
共计30课时
讲义已上传
5495人在学
考研数学一
共计71课时
讲义已上传
5100人在学
考研数学二
共计46课时
讲义已上传
3684人在学
考研数学三
共计41课时
讲义已上传
4483人在学
推荐使用万题库APP学习
扫一扫,下载万题库
手机学习,复习效率提升50%!
版权声明:如果考研网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本考研网内容,请注明出处。
官方
微信
扫描关注考研微信
领《大数据宝典》
下载
APP
下载万题库
领精选6套卷
万题库
微信小程序
帮助
中心
文章责编:wuxiaojuan825