首页 - 网校 - 万题库 - 美好明天 - 直播 - 导航
您现在的位置: 考试吧 > 自学考试 > 复习指导 > 经济类 > 正文

2017年自学考试《计量经济学》复习资料(一)

来源:考试吧 2017-10-9 13:11:10 要考试,上考试吧! 自考万题库
考试吧整理“2017年自学考试《计量经济学》复习资料(一)”,更多2017年自考复习指导,请及时关注考试吧自考网或微信搜索公众号“万题库自考”获取!

扫描/长按下面二维码
获取自考备考指导

扫描/长按下面二维码
免费做题、免费学直播课

  点击查看 2017年自学考试《计量经济学》复习资料汇总

  1、费里希(R.Frish)是经济计量学的主要开拓者和奠基人。

  2、经济计量学与数理经济学和树立统计学的区别的关键之点是“经济变量关系的随机性特征”。

  3、经济计量学识以数理经济学和树立统计学为理论基础和方法论基础的交叉科学。它以客观经济系统中具有随机性特征的经济关系为研究对象,用数学模型方法描述具体的经济变量关系, 为经济计量分析工作提供专门的指导理论和分析方法。

  4、时序数据即时间序列数据。时间序列数据是同一统计指标按时间顺序记录的数据列。

  5、横截面数据是在同一时间,不同统计单位的相同统计指标组成的数据列。

  6、对于一个独立的经济模型来说,变量可以分为内生变量和外生变量。内生变量被认为是具有一定概率分布的随机变量,它们的数值是由模型自身决定的;外生变量被认为是非随机变量,它们的数值是在模型之外决定的。

  7、对于模型中的一个方程来说,等号左边的变量称为被解释变量,等号右边被称为解释变量。在模型中一个方程的被解释变量可以是其它方程的解释变量。被解释变量一定是模型的内生变量,而解释变量既包括外生变量,也包括一部分内生变量。

  8、滞后变量与前定变量。有时模型的设计者还使用内生变量的前期值作解释变量,在计量经济学中将这样的变量程为滞后变量。滞后变量显然在求解模型之前是已知量,因此通常将外生变量与滞后变量合称为前定变量。

  9、控制变量与政策变量。由于控制论的思想不断渗入经济计量学,使某些经济计量模型具有政策控制的特点,因此在经济计量模型中又出现了控制变量、政策变量等名词。政策变量或控制变量一般在模型中表现为外生变量,但有时也表现为内生变量。

  10、经济参数分为:外生参数和内生参数。外生参数一般是指依据经济法规人为确定的参数,如折旧率、税率、利息率等。内生参数是依据样本观测值,运用统计方法估计得到的参数。如何选择估计参数的方法和改进估计参数的方法,这是理论经济计量学的基本任务。

  11、用数学模型描述经济系统应当遵循以下两条基本原则:第一、以理论分析作先导;第二模型规模大小要适度。

  12、联立方程模型中的方程一般划分为:随机方程和非随机方程。随机方程是根据经济机能或经济行为构造的经济函数关系式。在随机方程中,被解释变量被认为是服从某种概率分布的随机变量,且假设解释变量是非随机变量。非随机方程是根据经济学理论和政策、法规的规定而构造的反应映某些经济变量关系得恒等式。

  13、所谓经济计量分析工作是指依据经济理论分析,运用经济计量模型方法,研究现实经济系统的结构、水平、提供经济预测情报和评价经济政策等的经济研究和分析工作。

  14、经济计量分析工作的程序包括四部分:1、设定模型;2、估计参数;3、检验模型;4、应用模型。

  15、在社会经济现象中,变量之间的关系可分为两类:函数关系和相关关系。函数关系是指如果给定解释变量X的值,被解释变量Y的值就唯一地确定了,Y与X的关系就是函数关系,即Y=f(X)。相关关系是指如果给定了解释变量X的值,被解释变量Y的值不是唯一确定,Y与X的关系就是相关关系。

  16、回归分析与相关关系的联系与区别:回归分析研究一个变量(被解释变量)对于一个或多个其它变量(解释变量)的依存关系,其目的在于根据解释变量的数值来估计或预测被解释变量的总体均值。相关分析研究变量之间相互关联的程度,用相关系数来表示,相关系数又分为简单相关系数和复相关系数;前者表示两个变量之间的相互关联程度,后者描述三个或三个以上变量之间的相关程度。回归分析和相关分析二者是有联系的,它们都是研究相关关系的方法。但二者之间也有区别:相关分析关心的是变量之间的相关程度,但并不能给出变量之间的因果关系;而回归分析则要通过建立回归方程来估计解释变量与被解释变量之间的因果关系。此外,在回归分析中,定义被解释变量为随机变量,解释变量为非随机变量;而在相关分析中,把所考察的变量都看作是随机变量。

  17、总体回归模型是根据总体的全部资料建立的回归模型,又称为理论模型。样本回归模型是根据样本资料建立的回归模型。在绝大多数情形下,得到总体的全部资料是不可能的。

  18、估计回归参数的方法主要有最小二乘法,极大似然估计法和矩估计法,其中最简单的是普通最小二乘法。这种方法要求回归模型满足以下假设:

  1.随机误差μi的均值为零,即:E(μi)=0;

  2.所有随机误差μi都有相同的方差,即:Var(μi)=E(μi—E(μi))2=E(μi2)=σ2;

  3.任意两个随机误差μi和μj(i≠j)互不相关,也即μi和μj的协方差为零:

  E(μi—E(μj))(μi—E(μj))=E(μiμj)=0

  4.解释变量X是确定变量,与随机误差μi不相关。

  5.对回归参数进行统计检验时,还须假定μi服从正态分布。

  满足上述假定的线性回归模型称为经典线性回归模型。

  19、求解一元线性回归模型参数的应用公式:

  nΣXY—ΣXΣY  ΣYΣX2—ΣXΣXY  —   —

  β1=——————————   β0=————————————=Y —β1X

  nΣX2—(ΣX)2         nΣX2—(ΣX)2

  其中X、Y均为样本值。

  20、利用普通最小二乘法求的样本回归直线具有以下特点:

  (1)样本回归直线必然通过点X的均值和点Y的均值;

  (2)预测值Y的平均值与实际值Y的平均值相等;

  (3)残差ei均值为零;

  (4)残差ei与解释变量X不相关。

  21、普通最小乘估计量的特性:

  (1)无偏性:E(β0)= β0,E(β1)= β1由不同样本得到的β0和β1可能大于或小于总体的β1和β0,但平均起来等于总体参数。

  (2)线性特性:即估计量β0和β1均为样本观测值Y的线性组合。

  (3)有效性:即β1和β0的方差最小。

  22、简单线性回归模型的检验

  (1)对估计值的直观判断:1.对回归系数β1的符号判断;2.对β1的大小判断。

  (2)拟合优度的检验:拟合优度是指样本回归直线与样本观测值之间的拟合程度,通常用判定系数r2表示。检验拟合优度的目的,是了解释变量X对被解释变量Y的解释程度。X对Y的解释能力越强,残差ei的绝对值就越小,从而样本观测值离回归直线的距离越近。判定系数计算公式:

  ESS Σ(Y(预测值)—Y(均值)) β12(回归系数)Σ(X(样本值)—X(均值))

  r2=———=——————————————=————————————————————

  TSS Σ(Y(样本值)—Y(均值)) Σ(Y(样本值)—Y(均值))

  判定系数r2的两个重要性质:

  1.它是一个非负的量。

  2.它是在0与1之间变化的量。当r2=1时,所有的观测值都落在样本回归直线上,是完全拟合;当r2=0时,解释变量与被解释变量之间没有关系。

扫描/长按二维码即可帮助自考通关
获取2017自考最新资讯
获取最后6套预测卷
免费获取8次直播课程
获取历年考试真题试卷

自考万题库下载微信搜索"万题库自考"

1 2 3 下一页

  相关推荐:

  2017年自学考试《计算机应用基础》知识点汇总

  2017年自学考试《公共关系口才》章节笔记汇总

  2017年自考思想道德修养与法律基础考点讲解汇总

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
大学语文
共计461课时
讲义已上传
18020人在学
管理系统中计算机应用
共计21课时
讲义已上传
7218人在学
政治经济学(财经类)
共计738课时
讲义已上传
87485人在学
经济法概论(财经类)
共计21课时
讲义已上传
989人在学
毛概
共计269课时
讲义已上传
16493人在学
推荐使用万题库APP学习
扫一扫,下载万题库
手机学习,复习效率提升50%!
版权声明:如果自学考试网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本自学考试网内容,请注明出处。
官方
微信
扫描关注自考微信
领《大数据宝典》
报名
查分
扫描二维码
关注自考报名查分
看直播 下载
APP
下载万题库
领精选6套卷
万题库
微信小程序
帮助
中心
文章责编:zhaorong