3.直线形图形覆盖别的图形的问题
解决直线形图形覆盖别的图形的问题,常须较高的智巧,一般的处理方法是通过构造过渡图形,逐步调整,最终获得问题的解决.
例7 证明直径为1的图形F可被单位正方形覆盖.
分析 先后用互相垂直的两对平行线将图形夹在中间,再向内收缩.
证明 取位于水平方向和铅直方向的两对平行直线将图形F夹在中间,再将位于下方的直线l2向上平移,直至遇到图形F上点为止,中图45-8中l2′处.接着又将l1向下平移至与l2′相距为1的l1′处止.因图形F直径为1.故图形F仍被二直线l1′,l2′所夹.同样采用先左后右的顺序,将沿直线m1、m2平移至m1′、m2′处,m1′、m2′相距为1,而图形F依然夹在直线m1′,m2′中间,从而直线l1′、l2′、m1′、m2′所围成单位正方形即可覆盖图形F.
运用上述方法,我们可进一步解决以下问题:
例8 直径为1的图形F可被一个边长为 的正三角形覆盖,试证明之.
证明 作三对相距为1的平行直线m1、m2、n1、n2,l1、l2,相交直线所成角为60°,围成可覆盖图形F的六边形及正△A1B1C1,正△A2B2C2(具体作法可参照例7).如图45-9.设P为F中任意一点,它到六边形各边距离依次为x、a、y、b、z、c.又设正△A1B1C1的高为h1,正△A2B2C2的高为h2.因正三角形内一点到三边距离和等于正三角形的高,得
a+b+c=h1,
x+y+z=h2.
相加,得
(x+b)+(y+c)+(z+a)=h1+h2,
又x+b=1,y+c=1,z+a=1,
∴h1+h2=3.
根据抽屉原则,h1、h2中有一不大于 ,不妨设 ,即正△A1B1C1的高不大于 ,那么它的边长
因此图形F可被边长不大于 的正三角形即正△A1B1C1所覆盖.
4.图形的嵌入是覆盖问题的一种重要变化形式
所谓图形F能嵌入图形G,其本质就是图形G能覆盖图形F.
例9试证面积为S、周长为P的四边形一定可嵌入一个半径为 的圆.
分析 四边形内存在到各边距离不小于 的点.
证明 如图45-10,设四边形ABCD面积为S,周长为P.各边长分别为a1、a2、a3、a4.现以a1、a2、a3、a4为长, 为宽,向四边形内侧作矩形,则这些矩形总面积是
即四个矩形面积总和等于四边形面积.由于这四个矩形有重迭部分,所以四边形内部存在点O没有被矩形覆盖,那么以点O为圆心, 为半径的圆可嵌入四边形ABCD中.
例10 在一个半径等于18的圆中已嵌入16个半径为3的圆.证明在余下的部分中还能嵌入9个半径为1的圆.
证明 首先证明大圆中还能嵌入1个半径为1的小圆.先将大圆的半径收缩为17,而将半径为3的圆膨胀成半径为4的圆,此时大圆面积变为
π×172=289π.
16个半径为4的圆的面积是
π×42×16=256π.
289π-256π=33π.
这说明大圆中嵌入16个半径为3的圆外,还能嵌入半径为1的一个小圆,如图45-11所示.
再将大圆的半径收缩为17,半径为3的圆的半径膨胀为4,半径为1的圆膨胀为2,由于
289π-256π-4π=29π,所以大圆中除嵌入16个半径为3的圆外,还能嵌入两个半径为1的圆.依此类推,由于289π-256π-4π×8=π>0,
故大圆还可嵌入九个半径为1的小圆.
将图形收缩、膨胀是解嵌入问题一种重要方法.
相关推荐:·2021中考语文阅读理解最全的33套答题公式 (2020-11-10 17:20:05)
·2020中考生物知识点结构图分类整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知识点结构图分类整理:生物技术 (2019-11-8 14:53:20)
·2020中考生物知识点结构图分类整理:生物的多样性 (2019-11-8 14:50:27)
·2020中考生物知识点结构图分类整理:生物的生殖发育与遗 (2019-11-8 14:48:17)
2022年海南中考地理真题及答案已公布
2022年海南中考生物真题及答案已公布
2022年海南中考历史真题及答案已公布
2022年海南中考政治真题及答案已公布
2022年海南中考化学真题及答案已公布
2022年海南中考物理真题及答案已公布
2022年海南中考英语真题及答案已公布
2022年海南中考数学真题及答案已公布
2022年海南中考语文真题及答案已公布
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
·执业医师考试培训 试听 ·经济师考试培训 试听
·执业药师考试培训 试听 ·报关员考试培训 试听
·银行从业考试培训 试听 ·会计证考试培训 试听
·证券从业考试培训 试听 ·华图公务员培训 试听
·二级建造师考试培训 试听 ·公务员培训 网校 试听
·一级建造师考试培训 试听 ·结构师考试培训 试听
·注册建筑师考试培训 试听 ·造价师考试培训 试听
·质量资格考试培训 试听 ·咨询师考试培训 试听
·卫生职称考试培训 试听 ·监理师考试培训 试听