竞赛讲座17
-数学归纳法
基础知识
数学归纳法是用于证明与正整数 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位.
1.数学归纳法的基本形式
(1)第一数学归纳法
设 是一个与正整数有关的命题,如果
①当 ( )时, 成立;
②假设 成立,由此推得 时, 也成立,那么,根据①②对一切正整数 时, 成立.
(2)第二数学归纳法
设 是一个与正整数有关的命题,如果
①当 ( )时, 成立;
②假设 成立,由此推得 时, 也成立,那么,根据①②对一切正整数 时, 成立.
2.数学归纳法的其他形式
(1)跳跃数学归纳法
①当 时, 成立,
②假设 时 成立,由此推得 时, 也成立,那么,根据①②对一切正整数 时, 成立.
(2)反向数学归纳法
设 是一个与正整数有关的命题,如果
① 对无限多个正整数 成立;
②假设 时,命题 成立,则当 时命题 也成立,那么根据①②对一切正整数 时, 成立.
3.应用数学归纳法的技巧
(1)起点前移:有些命题对一切大于等于1的正整数正整数 都成立,但命题本身对 也成立,而且验证起来比验证 时容易,因此用验证 成立代替验证 ,同理,其他起点也可以前移,只要前移的起点成立且容易验证就可以.因而为了便于起步,有意前移起点.
(2)起点增多:有些命题在由 向 跨进时,需要经其他特殊情形作为基础,此时往往需要补充验证某些特殊情形,因此需要适当增多起点.
(3)加大跨度:有些命题为了减少归纳中的困难,适当可以改变跨度,但注意起点也应相应增多.
(4)选择合适的假设方式:归纳假设为一定要拘泥于“假设 时命题成立”不可,需要根据题意采取第一、第二、跳跃、反向数学归纳法中的某一形式,灵活选择使用.
(5)变换命题:有些命题在用数学归纳证明时,需要引进一个辅助命题帮助证明,或者需要改变命题即将命题一般化或加强命题才能满足归纳的需要,才能顺利进行证明.
相关推荐:·2021中考语文阅读理解最全的33套答题公式 (2020-11-10 17:20:05)
·2020中考生物知识点结构图分类整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知识点结构图分类整理:生物技术 (2019-11-8 14:53:20)
·2020中考生物知识点结构图分类整理:生物的多样性 (2019-11-8 14:50:27)
·2020中考生物知识点结构图分类整理:生物的生殖发育与遗 (2019-11-8 14:48:17)
2022年海南中考地理真题及答案已公布
2022年海南中考生物真题及答案已公布
2022年海南中考历史真题及答案已公布
2022年海南中考政治真题及答案已公布
2022年海南中考化学真题及答案已公布
2022年海南中考物理真题及答案已公布
2022年海南中考英语真题及答案已公布
2022年海南中考数学真题及答案已公布
2022年海南中考语文真题及答案已公布
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
·执业医师考试培训 试听 ·经济师考试培训 试听
·执业药师考试培训 试听 ·报关员考试培训 试听
·银行从业考试培训 试听 ·会计证考试培训 试听
·证券从业考试培训 试听 ·华图公务员培训 试听
·二级建造师考试培训 试听 ·公务员培训 网校 试听
·一级建造师考试培训 试听 ·结构师考试培训 试听
·注册建筑师考试培训 试听 ·造价师考试培训 试听
·质量资格考试培训 试听 ·咨询师考试培训 试听
·卫生职称考试培训 试听 ·监理师考试培训 试听