数学思想是命题趋势
综观上学期各区初三年级数学期末考试,数学思想在命题中贯穿始终。这体现了新课标的教学要求,也是近年来中考数学命题改革的又一个发展趋势。
中考数学考什么,这是考生和家长最关心的问题。以往的中考考题主要体现在对知识点的考查上,强调知识点的覆盖面,对能力的考查没有放在一个突出的位置上。近几年的中考命题发生了明显的变化,既强调了由知识层面向能力层面的转化,又强调了基础知识与能力并重。注重在知识的交汇处设计命题,对学生能力的考查也提出了较高的要求。中考数学重点考查学生的数学思维能力已经成为趋势和共识。
初中阶段常用到的数学思想有:数形结合思想、分情况讨论思想、化归思想、函数与方程思想、建立数学模型思想等。
为了更好地掌握数学思想的精髓,充分运用数学思想去分析、解决具体的问题,需明确各种数学思想的内涵。
1、数形结合思想是说数的问题可以通过对图形的分析来解决,形的问题也可通过对数的研究来思考。
2、分情况讨论思想就是当一个问题用统一的方法不能继续做下去的时候,需要对所研究的问题分成若干个情况分别进行研究的思想方法。
3、化归思想是说在解决实际问题时常常需要进行等价转换,把生疏的题目转化成熟悉的题目,通过特殊到一般,归纳出事物的规律,并能进行适当的变式变形。
4、函数与方程思想就是对于有些数学问题要学会用变量和函数来思考,学会转化未知与已知的关系。
5、数学建模思想是说在具体的问题分析中,尽量通过观察,抽象出主要的参量、参数与有关的定律、原理间建立起的某种关系。这样,一个具体的实际问题就转化为简化明了的一个数学模型。
综上,初三学生可利用寒假时间对数学思想方法进行梳理、总结,逐个认识它们的本质特征、思维程序和操作程序。有针对性地通过典型题目进行训练,能够真正适应中考命题。
相关链接:·2018中考数学知识点:一元一次方程 (2017-8-31 17:09:57)
·2018中考数学二次根式的加减法知识点总结 (2017-8-30 18:47:55)
·2018中考数学知识点:不等式应用 (2017-8-30 18:39:19)
·2018中考数学知识点:坐标系中的轴对称变化 (2017-8-29 17:38:53)
·2018中考数学知识点:三角函数的公式 (2017-8-29 17:34:40)
2022年海南中考地理真题及答案已公布
2022年海南中考生物真题及答案已公布
2022年海南中考历史真题及答案已公布
2022年海南中考政治真题及答案已公布
2022年海南中考化学真题及答案已公布
2022年海南中考物理真题及答案已公布
2022年海南中考英语真题及答案已公布
2022年海南中考数学真题及答案已公布
2022年海南中考语文真题及答案已公布
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
·执业医师考试培训 试听 ·经济师考试培训 试听
·执业药师考试培训 试听 ·报关员考试培训 试听
·银行从业考试培训 试听 ·会计证考试培训 试听
·证券从业考试培训 试听 ·华图公务员培训 试听
·二级建造师考试培训 试听 ·公务员培训 网校 试听
·一级建造师考试培训 试听 ·结构师考试培训 试听
·注册建筑师考试培训 试听 ·造价师考试培训 试听
·质量资格考试培训 试听 ·咨询师考试培训 试听
·卫生职称考试培训 试听 ·监理师考试培训 试听