2019年中考数学专题复习:四边形
1、四边形
定义1:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
按照组成多边形的线段的条数可以分为:三角形、四边形、五边形、六边形、···。三角形是最简单的图形。
定义2:多边形相邻两边组成的角叫做它的内角。多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
定义3:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
定义4:各个角都相等,各条边都相等的多边形叫做正多边形。
n边形内角和等于(n-2)×180°。 多边形的外角和等于360°。
2、平行四边形
(1)定义
两组对边分别平行的四边形叫做平行四边形。
(2)平行四边形的性质
平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
(3)平行四边形的判定
两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形。
(4)中位线
定义:连接三角形两边中点的线段叫做三角形的中位线。
中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
3、矩形
(1)定义
有一个角是直角的平行四边形叫做矩形。
(2)矩形的性质
矩形具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等。
推论:直角三角形斜边上的中线等于斜边的一半。
(3)矩形的判定
有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形。
4、菱形
(1)定义
有一组邻边相等的平行四边形叫做菱形。
(2)菱形的性质
菱形具有平行四边形的一切性质;
菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线都平分一组对角。
(3)菱形的判定
一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四条边相等的四边形是菱形。
5、正方形
正方形是最特殊的四边形,它具有矩形的性质,也具有菱形的性质。
1、了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。
2、理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。
3、探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
4、了解两条平行线之间距离的意义,能度量两条平行线之间的距离。
5、探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形具有矩形和菱形的一切性质。
6、探索并证明三角形的中位线定理。
1、多边形的概念,多边形的内角和与外角和。
2、平行四边形、矩形、菱形、正方形的性质和判定。
3、平行四边形、矩形、菱形、正方形的性质和判定在几何问题中的综合运用。
4、三角形的中位线定理。
1、八边形的内角和是 ,外角和是 ;
2、如果一个多边形的内角和是900°,那么这个多边形的边数是 ;
3、一个多边形的内角和与外角和相等,那么这个多边形的边数是 ;
4、已知平行四边形相邻两内角的差是20°,则四个内角的度数分别是 。
5、平行四边形的一个角比它的邻角的2倍还大15°,则相邻两个内角的度数为 。
6、已知□ABCD的周长为30cm,AB:BC=2:3,则AB= 。
7、平行四边形的一组对角的平分线( )
A、在一条直线上 B、平行 C、相交 D、平行或在同一直线上
8、下列说法中,错误的是( )
A、对角线垂直且平分的四边形是菱形
B、对角线平分且相等的四边形是矩形
C、对角线互相平分的四边形是平行四边形
D、对角线垂直且相等的四边形是正方形
9、如图,平行四边形ABCD中,AE、CF分别平分∠BAD,∠BCD,交对边于点E、F。求证:AE=CF。
10、如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF。
求证:(1)BE=DF; (2)BE∥DF。
11、若矩形的两邻边长分别是3cm,4cm,则其对角线的长是 。
12、矩形的两条对角线的夹角为60°,则这个矩形的两邻边的比为( )
A、1:1 B、1:2 C、2:3 D、1:
13、矩形被两条对角线分成四个小三角形,如果四个小三角形的周长之和为84cm,矩形的对角线长13cm,则矩形的周长是 。
14、如图,矩形ABCD中,AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F。求证:BE=CF。
15、已知菱形的边长为4,一个内角为60°,则菱形较短的对角线长为 。
16、菱形的两条对角线长分别为6和8,则这个菱形的周长为 ,面积为 。
17、菱形的一条对角线与边长相等,则菱形中较小的内角是( )
A、15° B、30° C、60° D、120°
18、如图,菱形ABCD,点E、F分别在边AB、AD上,求证:AE=AF。
19、正方形具有而矩形不一定具有的性质是( )
A、四个角都是直角 B、对角线相等 C、对角线互相平分 D、对角线互相垂直
20、如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F。
求证:DE=DF。
21、如图,正方形ABCD中,延长AB至E,延长BC至F,且BE=CF,连接DE,AF。
(1)求证:AF=DE (2)判断AF与DE的位置关系(是否垂直),并给予证明。
相关推荐:
各地2019中考报名时间 ※ 2019中考时间安排 ※ 关注微信先报名
2019中考报考指南 ※ 中考报名方法 ※ 中考报名条件
·2021中考语文阅读理解最全的33套答题公式 (2020-11-10 17:20:05)
·2020中考生物知识点结构图分类整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知识点结构图分类整理:生物技术 (2019-11-8 14:53:20)
·2020中考生物知识点结构图分类整理:生物的多样性 (2019-11-8 14:50:27)
·2020中考生物知识点结构图分类整理:生物的生殖发育与遗 (2019-11-8 14:48:17)
2022年海南中考地理真题及答案已公布
2022年海南中考生物真题及答案已公布
2022年海南中考历史真题及答案已公布
2022年海南中考政治真题及答案已公布
2022年海南中考化学真题及答案已公布
2022年海南中考物理真题及答案已公布
2022年海南中考英语真题及答案已公布
2022年海南中考数学真题及答案已公布
2022年海南中考语文真题及答案已公布
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
·执业医师考试培训 试听 ·经济师考试培训 试听
·执业药师考试培训 试听 ·报关员考试培训 试听
·银行从业考试培训 试听 ·会计证考试培训 试听
·证券从业考试培训 试听 ·华图公务员培训 试听
·二级建造师考试培训 试听 ·公务员培训 网校 试听
·一级建造师考试培训 试听 ·结构师考试培训 试听
·注册建筑师考试培训 试听 ·造价师考试培训 试听
·质量资格考试培训 试听 ·咨询师考试培训 试听
·卫生职称考试培训 试听 ·监理师考试培训 试听