各地中考
您现在的位置: 考试吧 > 2021中考 > 复习指导 > 中考数学 > 正文

学习指导:中考数学提分思想策略

来源:中考网 2019-6-12 11:09:28 要考试,上考试吧! 万题库
学习指导:中考数学提分思想策略,多关于2019中考成绩查询、中考分数线,请访问考试吧中考网或微信搜索“zhongkao566”获取。

  学习指导:中考数学提分思想策略

  中考数学考什么,这是考生和家长最关心的问题。以往的中考考题主要体现在对知识点的考查上,强调知识点的覆盖面,对能力的考查没有放在一个突出的位置上。近几年的中考命题发生了明显的变化,既强调了由知识层面向能力层面的转化,又强调了基础知识与能力并重。注重在知识的交汇处设计命题,对学生能力的考查也提出了较高的要求。中考数学重点考查学生的数学思维能力已经成为趋势和共识。

  初中阶段常用到的数学思想有:数形结合思想、分情况讨论思想、化归思想、函数与方程思想、建立数学模型思想等。

  为了更好地掌握数学思想的精髓,充分运用数学思想去分析、解决具体的问题,需明确各种数学思想的内涵。

  1、数形结合思想是说数的问题,可以通过对图形的分析来解决,形的问题也可通过对数的研究来思考。

  2、分情况讨论思想就是当一个问题用统一的方法不能继续做下去的时候,需要对所研究的问题分成若干个情况分别进行研究的思想方法。

  3、化归思想是说在解决实际问题时常常需要进行等价转换,把生疏的题目转化成熟悉的题目,通过特殊到一般,归纳出事物的规律,并能进行适当的变式变形。

  4、函数与方程思想,就是对于有些数学问题要学会用变量和函数来思考,学会转化未知与已知的关系。

  5、数学建模思想,是说在具体的问题分析中,尽量通过观察,抽象出主要的参量、参数与有关的定律、原理间建立起的某种关系。这样,一个具体的实际问题就转化为简化明了的一个数学模型。

  综上,初三学生可利用寒假时间对数学思想方法进行梳理、总结,逐个认识它们的本质特征、思维程序和操作程序。有针对性地通过典型题目进行训练,能够真正适应中考命题。

扫描/长按二维码帮助中考通关!
获取2019中考报名时间
获取2019中考作文
获取2套仿真内部资料
获取历年考试真题试卷

微信搜索"考试吧初高中" 关注获得中考秘籍

  相关推荐

  2019中考成绩查询 | 2019中考录取分数线 | 2019中考志愿填报

  2019中考真题答案 | 2019中考答案 | 2019年中考真题答案专题

  2019中考满分作文 | 2019中考作文题目 | 2019中考作文专题

文章搜索
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
中考栏目导航
版权声明:如果中考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本中考网内容,请注明出处。
免费复习资料
最新中考资讯
文章责编:liujiaqi