2.【答案】C。解析:显然A厂每天能生产上衣8640÷12=720件,运动裤8640÷18=480件;B厂每天生产上衣6720÷16=420件,运动裤6720÷14=480件。显然让B厂全力生产运动裤,一个月能生产14400件;A厂用14400÷720=20天生产与之配套的上衣,剩下10天,A厂按2:3的天数比例生产上衣与运动裤以保证配套,则生产4×720=2880套,A、B两厂共生产14400+2880=17280套。
3.【答案】B。解析:煎1、2、3个饼分别需要2、2、3分钟。继续往下分析,煎4个饼最少需要4分钟,煎5个饼需要5分钟,煎6个饼需要6分钟,煎7个饼需要7分钟……煎2009个饼至少需要2009分钟。
4.【答案】B。解析:货物装卸问题。有三列火车,根据结论,所需人数应为需要人数最多的三个车间之和,即为30+27+25=82人。
5.【答案】B。解析:调运问题,通过分析将题目给的图形先转化为表(1),
观察上表各列两数之差,最大的是第三列,因此北仓库的货物尽可能的供应丙工厂,即北仓库供应丙20吨。
在剩下的两列中,第一列的差大于第二列的差,所以南仓库的货物尽可能的供应甲工厂,即南仓库供应甲25吨。
因为南仓库货物分配完,甲还需要的28-25=3吨由北仓库供应,即北仓库供给丙后剩下的15吨货物中的3吨给甲,剩下的12吨给乙(如表2所示)。
相应的运费为3×10+25×8+12×6+20×12=542元。
6.【答案】B。解析:要想尽量多地截出甲、乙两种管子,残料应当尽量少。一根钢管全部截成1.0米的,余下0.1米,全部截成0.7米的,余下0.6米。如果这样截,再要求甲、乙管数量相等,那么残料较多。怎样才能减少残料,甚至无残料呢?我们可以将1.0米的和0.7米的在一根钢管上搭配着截。
所得残料长度见下表:
由上表看出,方法3和方法10没有残料,如果能把这两种方法配合起来,使截出的甲、乙两种管子数量相等,那么就是残料最少的方案了。
设按方法3截x根钢管,按方法10截y根钢管。这样共截得甲管(9x+2y)根,乙管(3x+13y)根。由甲、乙管数量相等,得到9x+2y=3x+13y,6x=11y。
由此得到x∶y=11∶6。用方法3截11根钢管,用方法10截6根钢管是符合题意的截法,共可截得甲、乙管各9×11+2×6=111根。
8.【答案】A。解析:三个比赛项目共产生3×(5+3+2+1)=33个积分,乙机关比甲机关少1分,比丙机关多1分,则甲得12分。设甲得名次的人数为x,乙为y,丙为z,则3x
相关推荐: