2、核力和结合能
我们知道化学反应过程中所释放的能量,主要来源于把原子保持在分子中的力,这种力的大小与原子的外层电子分布结构有关。当两个以上原子合拢在一起组成分子时,各原子的电子云就会发生变化,将组成共同的电子云把分子中的所有原子核笼罩在一起。在此同时并释放出能量,通常称为化学结合能。所以化合物分子的能量总是低于它所包含的各原子能量的总和。
与此类似,隐藏在原子核中的核能,就是起源于组成原子核的核子(质子和中子的统称)之间的很强的作用力。特别是对于那些原子序数高的、质量大的原子核,它们聚拢着为数众多的质子和中子。例如第83 号元素铋,在核中有83 个带正电荷的质子和126 个不带电的中子,总共209 个核子彼此居然能挤成一团,在核内排列得如此紧密,也不因为质子间的静电斥力而飞散开来。那么核子间到底是由一种什么样的奇异力把它们连结在一起的呢?
当然,除了由电磁作用所造成的质子之间的静电斥力外,根据具有质量的物体之间的相互作用核子间还存在着万有引力。虽然核子间距离很小,可产生大的引力。但同时我们也知道,质子和中子的质量是那样微小,所以它们之间的万有引力一定是微不足道的,可略去不计。如果核内再也没有其它作用力的影响,那么比万有引力强10^37倍的电磁力,将使原子核处于极不稳定的状态,这样核内的质子势必因巨大的静电斥力向四面八方飞散开来。然而,事实恰恰相反,各种元素的原子核在自然界中都能稳定地存在着。质子不仅没有随便飞出核外,相反地还和中子紧密地结合在一起,这就意味着核子间必定还有另外一种远比电磁力强得多的吸引力。
由于中于不带电荷,故这种“力”一定不同于既包括吸引力,又包括排斥力的电磁相互作用力。当然更不同于微小的万有引力,而是一种特别强大的短程相互作用力,并被称作为“核力”。它也是目前所知的最强大的作用力,这种强相互作用也叫做第三种相互作用。虽然人们对其作用过程还不十分清楚,但核力本身却有着许多很明显的特性。
首先,它比电磁相互作用强130 倍左右。而且核力是必须在很小的距离内才能起作用的短程力。随着核子间距离增加,核力将迅速减弱,一日超出核半径,核力就很快下降到零。但是万有引力和电磁力都是长程力,它们的强度都随着距离的增加而减小,即和距离平方成反化。如能把地球和太阳之间的距离增加10 倍,那末万有引力就下降到原来的百分之一。所以即使相隔数百万公里,仍然可感受到万有引力和电磁力的作用,而决不会下降到零。
其次,除氢核仅由一个质子组成外,其它核中都包括质子和中子。核力不仅存在于质子间,而且在中子间或中子和质子间都有核力存在,它们所表现的性质也基本相同。此外,从它们之间的结合能进行分析比较,发现它们的数值几乎是相等的。由此可得强大的核力近似和电荷无关。
最后,核内所有核子之间并不是都有核力相互作用的。也就是说在核中,某个核子只与相互邻近的数目有限的几个核子之间存在着核力的作用。而与那些远离的核子之间不发生任何作用,这种现象被称为核力的饱和性。相比之下,库仑力的范围就要大得多,而且也不受带电粒子数的限制,故是一种不会饱和的长程力。
当然,如果假设核力不存在饱和性,这样由于核子间强相互作用,使得核子数多的原子核,核子间的排列就更紧密。也就是说,质量数越大的核,其单位体积内聚拢的核子数也越多。这样就和前面所述,原子核单位体积中的平均核子数与质量数无关的结论发生矛盾。由此可知,核力确是具有饱和性的。
此外,核力与核子的自旋等也有关。但是核力的性质至今尚未完全搞清,这是有待于核科学家们继续解决的难题。然而值得注意的是,对核质量作精确测定时,发现它总比核所包含的质子和中子质量之和要小。这就表明,单个核子的质量和要比多个核子结合成核的质数致大。即由于核子间强大的核力作用,迫使核子间排列得很紧密,结果发生了质量减小的现象。为此,核科学家把核子结合前后的质量差值,称作谓核的“质量亏损”。例如,氦核是由4 个核子(2 个质子和2 个中于)所组成,2 个质子的质量加上2 个中子的质量2×1.007875+2×1.008665=4.032980u,而质谱仪测得的氦核质量为4.002603u,这样结合前后的质量亏损4.032980-4.002603=0.030377u。根据爱因斯坦的质能公式,把氦核的质量亏损换算成能量为28.30 电子伏。就单个氦核而言,此数值可能很小。然而,我们如能形成1 克氦,则所释放的能量将大得惊人,相当于190000 千瓦小时电能。
后来,人们通常把这种由核子结合成原子核时所放出的能量叫做核的总结合能。它随原子核中的核子数不同而不同,即核子数越多,则核的总结合能也越大。另外,为了便于对各种原子核的结合能进行比较,往往采用每个核子的平均结合能更为有利,有时也称它们比结合能。
在科学家们利用质谱仪对各种元素的核质量精确测定后,就能方便地从质量亏损计算出不同核的总结合能。发现它们随着核子数的增加,总结合能也不断增加。如果把质量数作为横坐标,而纵坐标为对应的比结合能,就可得到核的比结合能曲线。
显然由单个核子所组成的氢核(一个质子),其结合能为零。而质量数低于20 的核,它们的比结合能变化比较复杂,并出现了几个值得注意的峰值。其中氦、碳、氮和氧的比结合能峰值分别为7.08,7.69,7.48 和7.98 兆电子伏。相反锂和重氢(氖核)的比结合能都很小,分别为5.34 和1.12 兆电子伏。随着质量数的增加,在40~100 之间的最大比结合能约为8.7 兆电子伏。当质量数再大时比结合能又逐渐下降,直到铀核以后降为7.6 兆电子伏左右。此现象也证明了核力的饱和性。
随着核内核子数的改变,各种原子核结合的紧密程度是不一样的,这可从它们不同的比结合能上反应出来。由此可得出两种利用核能的途径:
一种是核分裂法或称核裂变法,即把比结合能比较小的重核,设法分裂成两个或多个比结合能大的中等质量原子核,即可释放出核能。
例如,将铀核用中子轰击裂变成钡和镧。裂变前铀核的比结合能为 7.6 兆电子伏,而裂变后的中等核,其比结合能为8.5 兆电子伏,两者相差0.9 个兆电子伏,而铀核有235 个核子,则总的能量差值就为200 百万电子伏左右。实际上铀核裂变时,还要放出2~3 个中子,除去这部分能量后,即可得200 兆电子伏左右的裂变能。
这就是1939 年,梅特涅和她侄子弗里施等人一起发现的铀核裂变现象,并测得200 兆电子伏左右的裂变能。另一种核能利用途径是合成法或称聚合法,即把比结合能较小的轻核,例如氘和氚,在特定的条件下把它们聚合成一个比结合能比较大的氦核,此时也可释放出比裂变能还要大几倍的能量。这种核反应过程通常称为聚变反应,由于它需要在几千万摄氏度温度的条件下才能实现,故又称为“热核反应”。
这种反应的实际例子是在1938 年,分别由德国出生的美国物理学家贝特和德国天文学家魏扎克各自独立发现的。即他们发现太阳上的氢核在十亿摄氏度的温度下聚变成氦核,并释放出27.6 兆电子伏能量。它是太阳能够在过去大约四十六亿年里不停地向地球辐射能量的重要依据,而且还能像目前那样继续辐射五十亿年。为此,人们不必为太阳能的枯竭而担心。
即使这样,太阳上热核反应所消耗的氢核数量仍然大得惊人,计算表明,每秒钟内约有六亿五千万吨氢聚合成氦,相应地每秒约有四百六十万吨质量消失掉,它们转换成巨大的辐射能普照宇宙和大地,为地球上的万物生长和人类的美好生活提供了必要的条件。