首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
近几年的公务员行测考试中,对于不定方程的应用比较多,从出题惯性上来说是比较热门的,但是由于不定方程的求解本身极具科研价值,所以对于不定方程的考察不可能倾向于学术性的考察,但是对于不定方程基本性质的考察却是出题的热点。
一、不定方程的概念
首先我们需要说明一下什么是不定方程,从最基本的数学知识点出发,我们知道方程可解,是一个方程组对应一个方程解,但是这里是需要满足一定的条件,这里的条件就是未知数的个数要等于方程的个数。比如:x=3。这里是一个未知数对应一个方程,方程只有一个确定的解,即x=3。
再进一步延伸可以得到,对于方程组x+y=2,x-y=1。两个未知数对应两个方程,我们都可以得到一个确定的解,而且解只有一个。但是,当未知数的个数多余方程的个数的时候,我们得到的方程就是不定方程。比如:x+y=2,两个位置数对应一个方程。对于这个不定方程的解,我们可以得到:x=0,y=2;x=1,y=1;x=2,y=0;……其解得个数在不限制其他条件的情况下是无限多的,这就是不定方程最基本的性质。
二、不定方程的应用情况
1、首先是来源于“鸡兔同笼”方程组的应用,即二元一次方程。
【例1】装某种产品的盒子有大、小两种,大盒每盒能装11个,小盒每盒能装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个( )?(情况1的普通应用)
A. 3,7 B. 4,6 C. 5,4 D. 6,3
在这个题目中,我们求解时首先必然是列方程,设大、小盒子的个数各为x,y。则有,11x+8y=89。有且仅有这样一个方程,而这一个方程就是不定方程,由不定方程的性质我们可以知道,其解得个数可以是无限多的,但是由于这里盒子的个数应该是整数,故其解应该是比较确定的值,但是依然无法直接求解,故此类不定方程我们采用带入排除的方式进行解题。答案只有A满足。
【例2】工人甲一分钟可生产螺丝3个或螺丝帽9个,工人乙一分钟可生产螺丝2个或螺丝帽7个,现在两人各花20分钟,共生产螺丝和螺丝帽134个,问生产的螺丝比螺丝帽多几个?( )(情况1的复杂应用)
A. 34个 B. 32个
C. 30个 D. 28个
此题当中,我们可以首先假设甲、乙两人20分钟生产的都是螺丝,则一共可生产(3+2)×20=100个, 但是螺丝和螺丝帽共生产了134个,相差的34个零件一定是因为做螺丝帽多出来的,而甲做一分钟螺丝帽可以多生产出9-3=6个零件,乙做一分钟螺丝帽可以多生产出7-2=5个零件。设甲、乙分别生产了x、y分钟螺丝帽,则有6x+5y=34,x只能取4,则y=2,所以甲乙共生产螺丝帽4×9+2×7=50个,螺丝134-50=84个,螺丝比螺丝帽多34个。所以选A。
这类题目当中,需要我们得到不定方程的整数解而不是所有解,对于解的限制我们可以得到一个确定的解。
2、不定方程类的问题再进一步的推广,有下面3元一次方程组的应用。
【例1】甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。如果同样的签字笔、圆珠笔、铅笔各买一支,共用多少钱( )
A.10元 B.11元 C.17元 D.21元
在这个题目当中,我们可设签字笔、圆珠笔、铅笔的钱数各为x、y、z,列方程可以得到,3x+7y+z=32, 4x+10y+z=43。 我们要求x+y+z=?,但是所列方程组为3个未知数,2个方程,是一个不定方程组,其解得个数是无限多的,但是由不定方程组的性质我们可以知道,不定方程组的任意一组解都满足x+y+z=?这个等式,故我们只需要得到此方程组的一个特解就可以,可以令y=0,则有3x+z=32, 4x+z=43。解得x=11,z=-1,则有x+y+z=10,故该题答案选A。
对于不定方程类问题的考察,近年来再公务员考试中趋向于逐渐复杂化,因此对于不定方程的学习和练习要进行系统总结,并强化提高。
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |