练习题:
1.在一次阅兵式上,某军排成了30人一行的正方形方阵接受检阅。最外两层共有多少人?
A.900 B.224 C.300 D.216
2.有一队士兵排成若干层的中空方阵,外层人数共有60人,中间一层共44人,则该方阵士兵的总人数是:
A.156人 B.210人 C.220人 D.280人
3.部队战士排成了一个6行、8列的长方阵。现在要求各行从左至右1,2,1,2,1,2,1,2
报数,再各列从前到后1,2,3,1,2,3报数。问在两次报数中,所报数字不同的战士有:
A.18个 B.24个 C.32个 D.36个
参考答案
1.【答案】B。解析:根据题意可知,阅兵方阵为实心方阵。
最外层每边30人,则最外层总人数为30×4-4=116人;
根据相邻两层相差为8人可知,次外层总人数为116-8=108人;
最外两层共有116+108=224人。
提示:(1)在方阵中若去掉一行一列,去掉的人数=原来每行人数×2-1;
(2)在方阵中若去掉二行二列,去掉的人数=原来每行人数×4-2×2。
2.【答案】C。解析:方法一,根据“相邻两层人数相差为8”,结合“外层人数共有60人,中间一层共44人”,可知这个方阵从外到内每层人数依次是60、52、44、36、28,所以该方阵士兵的总人数是60+52+44+36+28=220人。
方法二,最外层到中间一层相差(60-44)÷8=2层,即中间一层是第3层,一共有5层,则总人数是5×44=220人。
3.【答案】C。解析:此题可画出直观图进行解答。当从左至右报1时,从前至后报2的有8人,报3的也有8人;当从左至右报2时,同理可得,从前至后报1的有8人,报3的也有8人,即所报数字不同的战士有32人。故选C。
相关推荐:
公务员时事政治热点汇总 | 公务员考试经验 | 面试指导