首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
相邻数之间的差值相等,整个数字序列依次递增或递减。等差数列是数字推理测验中排列数字的常见规律之一。它还包括了几种最基本、最常见的数字排列方式:
自然数数列:1,2,3,4,5,6w w
偶数数列:2,4,6,8,10,12}}}…
奇数数列:1,3,5,7,9,11,13}}}}}}
等差数列的基本公式是:
a‑=a}+(n一1 )d , a‑ = ak+(n一k )d
其中a,为首项,a。为已知的第k项,当d}。时,a。是关于n的一次式,当d=0时,a。是一个常数。等差数列
例1:1,3,5,7,9,
A.7 C .11 D.16
【解析】答案为C。这是一种很简单的排列方式,其特征为相邻两个数字之间的差是一个常数从该题中我们很容易发现相邻两个差均为2,所以括号中的数字应为10713l5
例2:123,456,789, A.1122 B.101112 C.11112 D.100112
例3:12,15,18,(),24,270
A.20 8.21 C.22 D.23
【解析】答案为B)这是一个典型的等差数列,题中相邻两数之差均为3,未知项即18+3=21,或24-3 = 21,由此可知第四项应该是210
例4:2,4,(),80
A .3 B .5 C .6 D .7
【解析】答案为C)这是一个偶数数列,成等差数列
2.等差数列的变式其中的等差常数项为2
等差数列的变式,一般是题十数列的前后两项的差或和组成一个等差数列,或者前后两项的差或和所组成的数列,它们的平方根或者几次根组成的数列是一等差数列等等)
例5:3,4,6,9,(),180
A.11 B.12 C.13 D.14
【解析】答案为C)这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题日。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5w w显然,括号内的数字应填13。在这种类型的题日中,虽然相邻项之差不是一个常数,但这些差组成的数列都是一个等差数列。可以把它们称为等差数列的变式。
例6:1,4,9,16,25,490
A . 34 B .32 C .36 D .31
【解析】答案为C)可作图分析
其中3,5,7,9是一差为2的等差数列,所以填人后面的值应为11,故为25+11=36,故选C例9:1 .01,2.02,3.04,5.07,(),13.160 A.7.09 B . 7.10 (:.8.10 D.8.11
【解析】答案为D。将以上数字的规律分两部分来进行分析,从整数部分看,第三项为前两项的和,以此类推,故括号内数字的整数部分应为8;从小数部分看(01,02,04,07中,1,2,4,7的后一项与前一项差分别为1,2,3是公差为1的等差数列,所以后一项数字应为7+4=11,故选D
例7:1,5,14,30,55,()
A.90 8.91 C.64 D.80
【解析】答案为B,我们可将题十数列前后两项数字的差组成一数列,丙将差数组成的数列各数开平方
前后两数差的数列数列平方根组成的数
由此可见,1应为6,N应为36,故题十数列空项数字应为55+36=91,因而B项正确
(一)等比数列及其变式
数列相邻数之间的比值相等,整个数列依次递增或递减等比数列的基本通项公式为:
a‑ = a} a‑-[ , a‑ = ak a‑- k(其中a为首项,a。为已知的第k项,a}0)
1.等比数列
例8:2,4,8,16,32,()
A.48 B.64 C.128 D.256
【解析】答案为B。这是一个等比数列,题中后项除以前项的值均为2,故括号内的数为64
例9:2,6,18,54 ,()
A.162 B.108 C.72 D.216
【解析】答案为A。这显然是一个等比数列,后项与前项相除得3
例10:万,2,(),4,4万
A.2涯B .3江C .3 D .3万
【解析】答案为Ao题中后项与前项相除得泛,故空缺项应为2万
例11:15,5,
【解析】答案为Co题十数列的前后相邻数字之比为3[解析]答案为B此题是公比为1的等比数列,故括号内的值应为1。
2.等比数列的变式
例12:118,199,226,235,()
A.238 8.246 C.253 D.255
【解析】答案为A。这道题并不是直接表现为等比数列,但是我们可以经过简单处理,得到一个等比数列,将题中后项与前项依次相减,得到81,27,9,()的等比数列,可知()中应为3。由此可推知答案。
例13:7,16,34,70,()
A.140 B.148 C.144 D.142
【解析】答案为D。这也是一道变形了的等比数列题,但比上题复杂些,相邻两项之间没有直接的偶数关系,后一项减去常数2与前一项的商也为一个常数,也是2。具体来说,(16一2)=7=2,(34一2)=16=2,以此类推,答案应为D
例14:8,8,12,24,60,()
A . 90 B.120 C.180 D.240
【解析】答案为Co题日中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:1,1.5,2,2.5因此括号内的数字应为60x3=180
例15:4,6,10,18,34,()
A.50 B .64 C .66 D .68
【解析]答案为C。此数列表面上看没有规律,但它们后一项与前一项的差分别为2,4,8,16,是一公比为2的等比数列,故括号中的值应为34+16x2=34+32=66
例16:0,1,3,6,15,31,()
A.32 8.45 C.52 D.63
【解析]答案是D。后一数字与相邻前一数字的差分别是1,2,4,8,16,这是一个等比数列,故16后面应该是32。这种题型为二级等比数列。
(二)等差与等比数列混合
等差数列和等比数列的混合,相隔两项之间的差值或比值相等,整个数字序列不一定是有序的
例17:5,4,10,8,15,16 ,(),()
A.20,18 B.18,32 0.20,32 D.18,32
【解析】答案是C。此题是一道典型的等差、等比混合题。其中奇数项是以5为首项、公差为5的等差数列,偶数项是4为首项、公比为2的等比数列。这样,我们便可知答案为C
3 5 7 9
【解析】答案为B。此题乍一看似乎无从人手,但仔细分析便不难发现。此列分数的分母是以7为首项,公比为2的等比数列,而分子是以3为首项,公差为2的等差数列,所以,正确答案为B
例18:2,3,4,9,6,27,8,()
A.6 B.7 C.81 D.60
【解析】答案是C。奇数项数字组成等差为2的等差数列,偶数项组成等比为3的等比数列。
例19:2,4,8,16,14,64,20,()
A.25 B.35 C.256 D.270
【解析】答案为C,奇数项组成等差为6的等差数列,偶数项需要进一步化解才能找出规律:4,16,64,可以发现它们之间存在等比因子为4的规律
例20:4,2,2,3,6,15,()
A.16 B.30 C.45 D.50
更多信息请访问:考试吧公务员栏目
希望与其他公务员考生进行交流?点击进入公务员论坛>>>
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |