首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
一、比赛计数问题
公务员考试中经常会出现比赛计数问题,令许多考生头疼不已。其实,比赛计数问题是有一定技巧的,掌握了这些技巧,不仅可以节约时间,而且对正确解题有很大帮助。华图教研中心公务员考试辅导专家王永恒老师将为广大考生介绍“比赛计数”问题的快速解题方法,并结合例题进行讲解,希望能给广大考生一定的启发和帮助。
根据比赛规则,比赛计数问题主要分为四类,每类比赛都有对应的解题方法,如下所示:
注意:单循环赛,即任意两队打一场比赛,和顺序无关,所以是组合问题;双循环赛,即任意两个队打两场比赛,和顺序有关,所以是排列问题。
例1.100名男女运动员参加乒乓球单打淘汰赛,要产生男、女冠军各一名,则要安排单打赛多少场?( )
A.90 B.95 C.98 D.100
【解析】设有男运动员a人,女运动员b人。因为是淘汰赛,则要产生男冠军需要a-1场比赛,产生女冠军需要b-1场比赛,总的比赛场次需要a+b-2场。
例2.足球世界杯决赛圈有32支球队参加,先平均分成八组,以单循环方式进行小组赛;每组前两名的球队再进行淘汰赛。直到产生冠、亚、季军,总共需要安排( )场比赛。
A.48 B.63 C.64 D.65
例3.8个甲级队应邀参加比赛,先平均分成两组,分别进行单循环赛,每组决出前两名,再由每组的第一名和另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,整个赛程的比赛场数是()
A.16 B.15 C.14 D.13
【解析】此题与例2的思路相同,不再赘述。
以上比赛计数问题的解题方法简单易懂,容易掌握,希望考生能举一反三,提高解题速度和答题的准确率。
二、错位排列问题
排列组合问题向来是考生备考行测数量关系的难点之一,而其中的错位排列问题更是让考生晕头转向。不过,虽然错位排列问题有难度,但是也有快速解决之道。为帮助考生攻克难关,华图教研中心公务员考试辅导专家王永恒老师总结多年教研心得,为考生们详细解析错位排列问题的答题方法。
错位排列问题是一个古老的问题,最先由贝努利(Bernoulli)提出,其通常提法是:n个有序元素,全部改变其位置的排列数是多少?所以称之为“错位”问题。大数学家欧拉(Euler)等都有所研究。下面先给出一道错位排列题目,让广大考生有直观感觉。
例1.五个编号为1、2、3、4、5的小球放进5个编号为1、2、3、4、5的小盒里面,全错位排列(即1不放1,2不放2,3不放3,4不放4,5不放5,也就是说5个全部放错)一共有多少种放法?
【解析】直接求5个小球的全错位排列不容易,我们先从简单的开始。
当小球数/小盒数为1~3时,比较简单,而当为4~6时,略显复杂,考生们只需要记下这几个数字即可(其实0,1,2,9,44,265是一个有规律的数字推理题,请考生们想想是什么?)由上述分析可得,5个小球的全错位排列为44种。
上述是最原始的全错位排列,但在实际公务员考题中,会有一些“变异”。
例2.五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种?
问题出来了,为什么从贴错的角度考虑是20种贴法,而从贴对的角度考虑是10种贴法呢?
答案是,后者的解题过程是错误的,这种考虑只涉及到两个瓶子而没有考虑其他三个瓶子的标签正确与否,给瓶子贴标签的过程是不完整的,只能保证至少有两个瓶子的标签是正确的,而不能保证恰有两个瓶子的标签是正确的。所以华图教研中心公务员考试辅导专家王永恒老师建议各位考生在处理错位排列问题时,无论问恰好贴错还是问恰好贴对,都要从贴错的角度去考虑,这样处理问题简单且不易出错。
错位排列问题是排列组合问题里比较模糊、棘手的题型,所以考生们对错位排列问题一定要善于总结规律,熟能生巧,才能在临考时,准确抓住解题的突破口。
最后希望各位考生在国考中金榜题名!
相关推荐:2010年国考冲刺《行测》考点突破与专项练习汇总国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |