首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
数学运算题型纷繁复杂,考生不容易把握重点,据此名师通过对近三年国家公务员考试真题研究,归纳总结出“排列组合问题”、“几何问题”、“最值问题”为每年必考题型,甚至同一题型出现两次以上,所以考生备考时应予以足够重视。下面就这三种题型分别进行讲解和解析。
一、排列组合问题
排列组合问题是数学运算中为数不多的高中数学知识点,也成为了必考内容,主要考查的是排列组合的两个公式( )和两个原理(加法原理、乘法原理)。考生只要熟练运用两个公式,并分清排列与组合、分类与分步的差别即可快速解答此类问题。
【例1】(国家2010-46)某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?( )
A.7 B.9 C.10 D.12
【答案】C。
【解析】排列组合问题。对于三个部门发放到的材料份数,可分为三种情况:①9、9、12,有3种方法;②9、10、11,有 种方法;③10、10、10,有1种方法。总计有3+6+1=10种方法。
【例2】(国家2010-50)一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?( )
A.12 B.8 C.6 D.4
【答案】C。
【解析】排列组合问题。可以看为从四人中任意选择两人分配,即 。
【例3】(国家2009-115)厨师从12种主料中挑出2种,从13种配料中挑选出3种来烹饪某道菜肴,烹饪的方式共有7种,那么该厨师最多可以做出多少道不一样的菜肴?( )
A.131204 B.132132 C.130468 D.133456
【答案】B。
【解析】排列组合问题。 ,其中含有“3”这个因子,排除A、C、D,选B。
【例4】(国家2008-57)一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?( )
A.20 B.12 C.6 D.4
【答案】A。
【解析】排列组合问题。将2个新节目安排进来一共分两步:先插进第一个节目,有4个空,所以有4种安排方法;再插进第二个节目,有5个空,所以有5种安排方法。分步用乘法原理得到总共有4×5=20种安排方法。
二、几何问题
几何问题一般涉及几何图形的周长、面积、角度、表面积与体积,以及几何定理和几何特性的考查。此类问题考生只要熟悉几何公式、理解几何定义、定理便可迅速解答。
【例5】(国家2010-53)科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?( )
A.4 B.5 C.6 D.7
【答案】D。
【解析】几何问题。因为任意两段距离的和都不大于或等于第三边,所以没有组成三角形,即要形成N段距离,至少要有N+1个孔,即为7个。
【例6】(国家2009-116)如图所示,X、Y、Z分别是面积为64、180、160的三个不同形状的纸片,覆盖住桌面的总面积是290,其中X与Y、Y与Z、Z与X重叠部分的面积依次是24、70、36,那么阴影部分的面积是( )。
A.15 B.16
C.14 D.18
【答案】B。
【解析】几何问题。具体解法可用容斥原理公式。设所求为x,则:64+180+160-24-70-36+x=290,解得x=16。
【例7】(国家2008-49)相同表面积的四面体,六面体,正十二面体以及正二十面体,其中体积最大的是:( )
A.四面体 B.六面体 C.正十二面体 D.正二十面体
【答案】D。
【解析】几何问题。根据四条定理:(1)等面积的所有平面图形当中,越接近圆的图形,其周长越小。(2)等周长的所有平面图形当中,越接近圆的图形,其面积越大。(3)等体积的所有空间图形当中,越接近球体的几何体,其表面积越小。(4)等表面积的所有空间图形当中,越接近球体的几何体,其体积越大。由(4)可以选出正确答案为D。
三、最值问题
最值问题一般为题目中出现“至多”、“至少”、“最多”、“最少”、“最大”、“最小”、“最快”、“最慢”、“最高”、“最低”等字样,题目较抽象,难度较大。解答此类题型的方法为“极端分析法”就是构造符合条件的数值。
【例8】(国家2010-55)某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?( )
A.88 B.89 C.90 D.91
【答案】B。
【解析】最值问题。20人总共失分(100-88)×20=240,由及格率为95%知只有1人不及格。要使第十名失分尽量多(得分尽量低),可使前9名失分尽量少,设分别失分0,1,…,8分。而从第11名至第19名亦是失分尽量少,设第10名、第11名…第19名分别失分x,x+1,x+2,…,x+9,则可得(0+1+…+8)+[x+(x+1)+(x+2)+…(x+9)]+41≤240,解得x最大为11,即第10名最少得分89分。
【例9】(国家2009-118)100个人参加7个活动,每人只能参加一个活动,并且每个活动的参加人数都不一样,那么参加人数第四多的活动最多有多少人?( )
A.22 B.21 C.24 D.23
【答案】A。
【解析】最值问题。要使第四名的活动最多,则前三名要尽量的少,又因每项活动参加的人数都不一样,那么,前三名人数分别为1,2,3。设第四名的人数为x人,则有:1+2+3+x+(x+1)+(x+2)+(x+3)=100,解得x=22,所以,参加人数第四名的活动最多有22人参加。
【例10】(国家2008-56)共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?( )
A.30 B.55 C.70 D.74
【答案】C。
【解析】最值问题。1-5题分别错了20、8、14、22、26道,加起来(注意利用凑整法速算)为90。题目问“至少有多少人能通过这次考试”,所以我们应该让更多的人不及格,因此这90错题分配的时候应该尽量每3道分给一个人,即可保证一个人不及格,那么90道错题一共可以分给最多30个人,让这30个人不及格,所以及格的人最少的情况下是70人。
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |