首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
一.页码问题
对多少页出现多少1或2的公式
如果是X千里找几,公式是 1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,
比如,7000页中有多少3 就是 1000+700*3=3100(个)
20000页中有多少6就是 2000*4=8000 (个)
友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了
二,握手问题
N个人彼此握手,则总握手数
S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2
例题:
某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次, 请问这个班的同学有( )人
A、16 B、17 C、18 D、19
【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。按照排列组合假设总数为X人 则Cx取3=152 但是在计算X时却是相当的麻烦。 我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际的握手次数是x×(x-3)÷2=152 计算的x=19人
三,钟表重合公式
钟表几分重合,公式为: x/5=(x+a)/60 a时钟前面的格数
四,时钟成角度的问题
设X时时,夹角为30X , Y分时,分针追时针5.5,设夹角为A.(请大家掌握)
钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】 【】表示绝对值的意义(求角度公式)
变式与应用
2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)
五,往返平均速度公式及其应用(引用)
某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
证明:设A、B两地相距S,则
往返总路程2S,往返总共花费时间 s/a+s/b
故 v=2s/(s/a+s/b)=2ab/(a+b)
六,空心方阵的总数
空心方阵的总数= (最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4
= 最外层的每一边的人数^2-(最外层每边人数-2*层数)^2
=每层的边数相加×4-4×层数
空心方阵最外层每边人数=总人数/4/层数+层数
方阵的基本特点: ① 方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;
② 每边人(或物)数和四周人(或物)数的关系:
③ 中实方阵总人(或物)数=(每边人(或物)数)2=(最外层总人数÷4+1)2
例:① 某部队排成一方阵,最外层人数是80人,问方阵共有多少官兵?(441人)
② 某校学生刚好排成一个方队,最外层每边的人数是24人,问该方阵有多少名学生?(576名)解题方法:方阵人数=(外层人数÷4+1)2=(每边人数)2
③ 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?(289人)
解题方法:去掉的总人数=原每行人数×2-1=减少后每行人数×2+1
典型例题:某个军队举行列队表演,已知这个长方形的队阵最外围有32人,若以长和宽作为边长排出2个正方形的方阵需要180人。则原来长方形的队阵总人数是( )
A、64, B、72 C、96 D、100
【解析】这个题目经过改编融合了代数知识中的平方和知识点。长方形的(长+宽)×2=32+4 得到长+宽=18。 可能这里面大家对于长+宽=18 有些难以计算。 你可以假设去掉4个点的人先不算。长+宽(不含两端的人)×2+4(4个端点的人)=32 , 则计算出不含端点的长+宽=14 考虑到各自的2端点所以实际的长宽之和是14+2+2=18 。 求长方形的人数,实际上是求长×宽。根据条件 长×长+宽×宽=180 综合(长+宽)的平方=长×长+宽×宽+2×长×宽=18×18 带入计算即得到B。其实在我们得到长宽之和为18时,我们就可以通过估算的方法得到选项B
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |