首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
因数分解是解数字推理题的一种常用解法,尤其是2010年国考五道数字推理题当中2道都可以用因数分解的方法解题,这引起了广大考生对于因数分解题型的重视。但是如何将一个数列中的各项进行合理拆分,使新构成的两个数列能够呈现非常简单的规律,是解题的难点。本文将对这种方法进行详细介绍。
一、方法简介
我们通过一个例子来具体介绍因数分解这种方法:
【例1】 2、12、36、80、( )
A.100 B.125 C.150 D.175
原数列 2、12、36、80、( 150 )
子数列1: 1、2、 3、 4、( 5 )
子数列2: 2、6、12、20、( 30 )
原数列中的项等于子数列1和子数列2中对应项的乘积,子数列1为自然数列,子数列2为二级等差数列,所以答案为C。从这个例题我们可以总结出,因数分解就是将原数列中各项进行拆分,最终形成两个或两个以上的呈现简单规律的子数列从而解题的一种方法。
二、难点突破
因数分解的难点在于如何将一个数字进行分解,比如数字30,可以分解为1*30,3*10、5*6三种形式,最后选择哪一种种分解非常关键。做这一类题的核心是迅速的从原数列当中提取出一个非常简单的子数列,这个子数列很多情况下就是一个明显的等差数列,如:
0、1、2、3、4……
-2、-1、0、1、2……
1、2、3、4、5、6……
1、3、5、7、9……
通过以下往年国考真题具体掌握上述方法:
【例2】1,6,20,56,144,()
A.256 B. 312 C. 352 D.384
解析:迅速从原数列当中提出子数列1为:1、3、5、7、9、(11),则另一子数列2为:1、2、4、8、16、(32),所以选项为11*32=352,选C。
【例3】-2,-8,0,64,( )。
A.-64 B.128 C.156 D.250
解析:迅速从原数列当中提出子数列1为:-2、-1、0、1(2),则另一子数列2为:1、8、27、64、(125),所以选项为2*125=250,选D。
【例4】0,4,18,48,100,( )。
A.140 B.160 C.180 D.200
解析:迅速从原数列当中提出一个子数列为:0、1、2、3、4、(5),则另一子数列为1、4、9、16、25、(36) 所以选项为5*36=180,选C。
三、题型识别
因数分解方法解题迅速,技巧性强,在考试当中利用这种方法可以节约时间,如何有效识别题型是利用这种方法的前提,这种题型一般除了个位数之外,其它数的绝对值都是合数。若数列中间有0,且其前后项分别为负数和正数(如例3),则首先考虑因数分解。
正是由于其科学性和技巧性,因数分解方法在进行有效的学习后具有较强的可操作性,这当然也就需要大家在备考时多做练习、多总结。最后预祝大家公考成功。
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |