首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
随着四川公务员考试的逐渐成熟和报考人数的逐年增多,近几年在四川公务员考试行测测试中出现了一些过程极其复杂或者条件极少的的数学运算题。如果运用传统的解题方法去解这类题目,不仅会浪费极其宝贵的考试时间,有些题目甚至是无法解决的。专家总结出解决这类题目的独特的解题思想——“集成思想”。
所谓的“集成”思想又叫做整体思想,是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法. 从整体出发的处理方法,体现了一种着眼全局、通盘考虑的整体观念。
例题1:甲、乙二人从相距20千米的两地同时出发,相向而行,甲的速度为6千米/时,乙的速度为4千米/时. 一只小狗与甲同时出发向乙奔去,遇到乙后立即调头向甲跑去,遇到甲后又立即调过头来迎乙……直到二人相遇为止. 若小狗的速度是13千米/时,在这一奔跑过程中,小狗的总行程是多少千米?
A.18 B.23 C.26 D.29
【解析】 对本题的处理,可以有以下几种不同的方案
第一种方案:逐段计算小狗奔跑的路程. 这是可以做到的:例如,第一次遇到乙时,小狗所走的路程为 × 13(千米),求所有路程的和即得。
第二种方案:逐段计算小狗奔跑的时间. 例如,第一次遇到乙时,小狗奔跑的时间为 (小时),求出奔跑时间的总和,再乘以小狗的速度即得。
第三种方案:注意到小狗来回奔跑的时间之和,恰等于甲、乙二人从出发到相遇所需的时间(这一发现很重要,因为在这段时间内,小狗是不停奔跑的),故小狗奔跑的总时间为= 2小时,从而轻而易举地得到小狗奔跑的总路程为13 × 2 = 26(千米)。
比较上述三种方案可知,如果我们的思路被小狗牵着鼻子走,沿着它的奔跑路线去逐段计算路程或时间(即执行第一、二种方案),将要进行大量的计算,且要涉及无穷递缩等比数列求和的运算,过程比较繁复,而第三种方案,我们忽略了小狗奔跑的细节,只是根据题目中的条件计算出小狗奔跑的总时间,显得机巧、简捷、一目了然。
【答案】C
例题2:有甲、乙、丙三种货物。若购甲3件、乙7件、丙1件,共需3.15元;若购甲4件、乙10件、丙1件,共需4.2元。现在计划购甲、乙、丙各一件,共供需多少钱?
A.0.95元 B.1.05元 C.1.08元 D.1.10元
【解析】这道题包括3个未知数,但只有2个独立的条件,如果按传统的解题思路,我们需要分别计算出甲、乙、丙货物的单价,但按照题目条件我们是做不到的,这道题目看似山穷水尽。但用“集成”的思想我们就会很快解出。
设甲、乙、丙各一件分别需元,元,元,依题意列方程得:
3x+7y+z=3.15 (1)
4x+10y+z=4.20 (2)
3×(1)-2×(2)=x+y+z=1.05(元)
因为在这一过程中我们忽略了一些无关结果的细节,因此用这种法法解题往往达到事半功倍的效果,真叫山穷水复疑无路,柳暗花明又一村。
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |