首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
数字推理是公务员考试中每年必考的知识点之一,一般有5个小题,主要考查考生的数字敏感度和考生对数字之间内在逻辑联系的把握。很多考生对这类题目总是束手无策,最后往往选择放弃。究其原因,乃是考生没有掌握解数字推理题的思维方法。
横向递推和纵向延伸是解决数字推理题的两种主要的思维方法。所谓横向递推的思维方法,是指通过分析相邻两个或者三个数字之间内在的运算关系(主要是分析前面的数字通过怎样的简单运算才能得到后面的数字)来解题的思维方法。这是解决数字推理题的最基本、最常用的方法。
【例1】 1/9 1 7 35 ()
【解析】我们采用横向递推的思路,考虑相邻两项之间的运算关系,很容易得到如下等式:
1/9 ×9=1
1 ×7=7
7 ×5=35
35 ×( )=( )
也就是说,数列中的第二项、第三项和第四项分别是第一项、第二项和第三项的9倍、7倍和5倍,那么我们可以理所当然的认为下一项(即第五项)应该是第四项的3倍,即35×3=105为所求答案。
【例2】 2 3 5 8 13 ( )
【解析】横向递推的思维方式要求我们把相邻两个或者三个数字之间的运算关系作为解题的突破口,很容易可以得到如下的关系:
2+3=5
3+5=8
5+8=13
8+13=()
显而易见,前两项的和即为下一项,那么括号里面的数字应该是其前两项的和,即8+13=21。
与横向递推的思维方式相对应的是纵向延伸的思维方式,后者主要强调的是数字本身所隐含的等值表达形式,通过对其数字本身的转换来找出所给数列中的共同规律,从而达到快速解题的效果。
【例3】 1/9 1 7 36 ()
【解析】我们先不考虑前项与后项之间的运算关系,而是先关注数字本身的另一种等值表达形式,那么
1/9=9—1
1=80
7=71
36=62
这样的话,原数列就等价转化为 9-1 80 71 62 ( )这样一个数列。显然,括号里面应该是53=125。
举例2: 2 6 12 20 30 ()
分析:我们把原数列的数字用另一种方式写出来,寻找它们之间的共同规律,原数列可以等价于如下的数列:1×2, 2×3, 3×4, 4×5, 5×6,( )
通过转换成这种形式,我们很容易看到下一项应该是6×7=42。
横向递推的思维方式主要用于解决差级数列和递推数列这两种类型,是解决这两种类型题目的钥匙,递推数列是国家公务员考试和地方公务员考试的必考题型,难度虽然在不断加大,但其解题思路仍然是横向递推;纵向延伸的思维方式主要针对的是幂次数列和分数数列,对于幂次数列,通过指数和底数的相互调适,从而找到其共同规律,而对于分数数列,则主要通过通分和反约分等形式来进行等值转换,从而找到共同规律来解题。
横向递推和纵向延伸的思维方式,是解决数字推理题的两种思路,二者并不是相互独立的,而是相互联系的。随着国考数字推理题难度的加深,很多题目的解答都需要同时运用这两种思维方式,只有真正地掌握了这种方法,才能做到得心应手。
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |