首页考试吧论坛Exam8视线考试商城网络课程模拟考试考友录实用文档求职招聘论文下载
2013中考
法律硕士
2013高考
MBA考试
2013考研
MPA考试
在职研
中科院
考研培训 自学考试 成人高考
四 六 级
GRE考试
攻硕英语
零起点日语
职称英语
口译笔译
申硕英语
零起点韩语
商务英语
日语等级
GMAT考试
公共英语
职称日语
新概念英语
专四专八
博思考试
零起点英语
托福考试
托业考试
零起点法语
雅思考试
成人英语三级
零起点德语
等级考试
华为认证
水平考试
Java认证
职称计算机 微软认证 思科认证 Oracle认证 Linux认证
公 务 员
导游考试
物 流 师
出版资格
单 证 员
报 关 员
外 销 员
价格鉴证
网络编辑
驾 驶 员
报检员
法律顾问
管理咨询
企业培训
社会工作者
银行从业
教师资格
营养师
保险从业
普 通 话
证券从业
跟 单 员
秘书资格
电子商务
期货考试
国际商务
心理咨询
营 销 师
司法考试
国际货运代理人
人力资源管理师
广告师职业水平
卫生资格 执业医师 执业药师 执业护士
会计从业资格
基金从业资格
统计从业资格
经济师
精算师
统计师
会计职称
法律顾问
ACCA考试
注册会计师
资产评估师
审计师考试
高级会计师
注册税务师
国际内审师
理财规划师
美国注册会计师
一级建造师
安全工程师
设备监理师
公路监理师
公路造价师
二级建造师
招标师考试
物业管理师
电气工程师
建筑师考试
造价工程师
注册测绘师
质量工程师
岩土工程师
造价员考试
注册计量师
环保工程师
化工工程师
咨询工程师
结构工程师
城市规划师
材料员考试
监理工程师
房地产估价
土地估价师
安全评价师
房地产经纪人
投资项目管理师
环境影响评价师
土地登记代理人
缤纷校园 实用文档 英语学习 作文大全 求职招聘 论文下载 访谈|游戏
公务员考试
您现在的位置: 考试吧(Exam8.com) > 公务员考试 > 行政能力 > 数量关系 > 内蒙古 > 正文

2012内蒙古公务员考试:论比例法解相遇追及问题

  行程问题是公务员行测考试中较难的一类典型题型,也是很多学员难以突破的题型之一。而每年无论是国考、联考或是其他自主命题省份的省考,都会通过行程问题考察考生对于复杂问题的解决能力,以达到区分考生水平和层次的目的。在公务员考试中,行程问题主要包括基本公式、相遇追及、流水行船和电梯运动等问题,而相遇追及问题是考察频率最高、变化最多、入手最难的题型。近年来,相遇追及问题从一次相遇到多次相遇、从直线运动到曲线运动,比例法在解决这类问题中的作用凸显出来。特别是当题目较抽象、已知条件非常少时,方程法固然可用,但是相当复杂的情况下,能够利用比例法在短时间内找到解题的突破口,快速解答。主要就相遇追及问题中比例法的解题思路作简要阐述。

  比例法,也称比例份数法,即当题目已知条件较少、难以列出具体式子的抽象情形时,可根据已知量的比例关系设出份数来求解。如在行程问题中,根据行程问题的基本公式: ,当 不变时, 成反比;当 (或 )不变时, 与 (或 )成正比。

  【例题1】甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要6小时,乙车单独清扫需要9小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫15千米。问东、西两城相距多少千米?( )

  A.60千米 B.75千米

  C.90千米 D.135千米

  【答案】B

  【解析】这是一道典型的相遇追及问题。找出等量关系,列出方程求解是可行的,但会非常复杂。比例法, =6:9=2:3,则 一定时, =3:2。相遇时, 一定, =3:2。令甲走了3份距离,乙走了2份距离,多一份距离为15千米。故全程共5份距离,为75千米。

  【例题2】甲、乙两人开车同时从A、B两地出发,甲每小时行90千米,乙每小时行60千米,两人在途中C点相遇。如果甲晚出发1小时,两人将在途中D点相遇。且AB两地中点E到C、D两点的距离相等。那么A、B两点间的距离为?( )

  A.72 B.108

  C.150 D.180

  【答案】D

  【解析】这同样是一道比较复杂的相遇追及问题。如下图所示,考虑比例法。当时间一定时, = =90:60=3:2,即设全程共5份距离,C点相遇时,甲走3份距离(AC段),乙走2份距离(BC段)。又由于E为中点,所以AE=BE=2.5份距离。故CE=ED=0.5份距离。那么在D点相遇时甲走了AD=AE-DE=2.5份距离-0.5份距离=2份距离,根据 =3:2可得,在乙走了1小时以后,乙又走了4/3份距离。故乙先走1小时所走的60千米对应BD-4/3份距离=3份距离-4/3份距离=5/3份距离,解得1份距离=60÷5/3=36千米。全程共5份距离,即AB相距180千米。

  【点拨】在双人单次相遇追及问题中,当已知条件较少、难以入手,列方程未知数太多时,可以考虑比例法。特别是题目已知速度或时间的具体量,而其余条件缺乏求解路程时,尤其选择比例法快速破题。

  【例题3】甲、乙两人同时从A、B两地出发相向而行,甲到达B地后立即往回走,回到A地后又立即向B地走去;乙到达A地后立即往回走,回到B地后立即返回A地,如此往复,行走的速度不变。若两人第一次迎面相遇的地点距A地500米,第二次迎面相遇地点距B地700米,则A、B两地的距离是( )。

  A .1300米 B.1120米

  C.1000米 D.800米

  【答案】D

  【解析】这是一道非常抽象的多次相遇追及问题。考虑比例法,速度不变,相遇时时间一定,则 = ,且第一次相遇时的路程之比与第二次相遇时的路程之比相等。如下图所示,第一次在C点相遇,第二次在D点相遇。设全程AB为X,那么第一次相遇时,甲走了AC=500米,乙走了BC=X-500米;第二次相遇时,甲共走了AB+BD=X+700米,乙共走了2AB-BD=2X-700,列出方程为500:(X-500)=(X+700):(2X-700),解得X=800米。

  【例题4】如下图所示,AB两点是圆形体育场直径的两端,两人从AB点同时出发,沿环形跑道相向匀速而行,他们在距A点弧形距离80米处的C点第一次相遇,接着又在距B点弧形距离60米处的D点第二次相遇,问这个圆形体育场的周长是多少米?( )

  A .240 B.300

  C.360 D.420

  【答案】C

  【解析】这同样是一道非常抽象的多次相遇追及问题。考虑比例法,两次相遇时间相同,所以 = ,而整个运动过程中,甲、乙速度不变,故第一次相遇时的路程之比与第二次相遇时的路程之比相等。设半圈长为X,第一次相遇时甲走了弧AC=80米,乙走了弧BC=X-80米;第二次相遇时甲共走了弧ABD=X+60米,乙共走了弧BAD=2X-60米,列出方程得80:(X-80)=(X+60):(2X-60),解得X=180米。故整圈体育场的长度为360米。

  【点拨】在相遇追及问题中,双人往返的多次相遇问题是非常复杂的。当题目仅仅只有相遇地点与端点距离的已知条件时,可以考虑比例法,N次相遇时两人走过的路程比例都相等,可快速破题求解。

  研究发现根据近年来行程问题的考察趋势,相遇追及问题仍然是公务员行测考试中的重点测查题型。当相遇追及题型变得更加抽象,或是采取方程法求解非常复杂时,考虑用比例法解答行程问题,往往可以达到事半功倍的效果。

1 2  下一页
文章搜索
在线名师 1 2 3 4
华图公务员考试研究中心申论教研室主任,法学博士,中国社会科学院青年学者。长期从事公务员...详细
公务员考试栏目导航
版权声明:如果公务员考试网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本公务员考试网内容,请注明出处。