为了在考试中能快速并且准确的解决出数学运算题目,一些必要的方法和技巧是大家必须要掌握的,下面就来介绍下其中比较常见的一种解题思想——极限思维。所谓的极限思想就是指平时生活中遇到某件事情时,我们会自然考虑事情最好会是什么样子,最差会是什么样子的一种能力;转换成解题其实就是考虑符合题目中条件的最大值或最小值的一种解题技巧。
不过根据题目中所给条件的不同,可以大致分成两类:一类是最大值和最小值都能实现;另一类是最大值或最小值只能实现其中一个。下面我们就这个联考真题来分析下这种方法是如何应用的。
【例1】刘女士今年48岁,她说:“我有两个女儿,当妹妹长到姐姐现在的年龄时,姐妹俩的年龄之和比我到那时的年龄还大2岁。”问姐姐今年多少岁?
A. 23 B. 24
C. 25 D. 不确定
【解析一】典型年龄问题:由“妹妹长到姐姐现在的年龄时”可知姐妹之间存在年龄差,但是具体差几岁我们不清楚,所以设年龄差为a岁,即a年后妹妹长到姐姐现在的年龄,设姐姐今年为x岁,则根据“姐妹俩的年龄之和比我到那时的年龄还大2岁”得出(x+a)+x=(48+a)+2,解得x=25岁,所以选择C选项。
【解析二】此题就是典型的单侧极限法的应用,因为姐妹之间的年龄差值未知,所以我们讨论极限情况:最小值为0,最大值不能确定。所以我们可以直接讨论姐妹年龄差为0岁,即双胞胎时的情况:设姐姐今年为x岁,则根据“姐妹俩的年龄之和比我到那时的年龄还大2岁”得出x+x=48+2,解得x=25岁,所以选择C选项。
比较下两种解法,后者是更侧重考察实际的理解分析能力,更能体现出一个公务员的内在素质,而且也比前者大大的缩短了解题时间。我们来通过下面这个例题再来体会下。
【例2】有两只相同的大桶和一只空杯子,甲桶和乙桶分别装一样多的牛奶和糖水,先从甲桶内取出一杯牛奶倒入乙桶,再从乙桶取出一杯糖水和牛奶的混合倒入甲桶,问,此时甲桶内的糖水多还是乙桶内的牛奶多?
A.无法判定 B.甲桶糖水多
C.乙桶牛奶多 D.一样多
【解析】此题如果按照常规的浓度问题来求解,很多考生只能放弃,应为太浪费时间,但是如果我们考虑杯子的极值:最小值不能设定为0,最大值可以与溶液的容积一样大。所以题目中的第一步可以转换为完全混合,第二步将混合液体倒回,故甲桶内的糖水和乙桶内的牛奶一样,所以选择D选项。