(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)
(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。(注:前一就是高中数学常说的差后等差数列或等比数列)
(3)看各数的大小组合规律,作出合理的分组。如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 ,74*74-40=5436,这就是规律。
(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。首尾关系经常被忽略,但又是很简单的规律。②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。)
6)看大小不能看出来的,就要看数的特征了。如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=13
2+6+9=17 2+8+6=16 3+0+2=5,∵ 256+13=269 269+17=286 286+16=302 ∴ 下一个数为 302+5=307。
(7)再复杂一点,如 0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。
3*3-1=8
8*3-3=21
21*3-8=55
8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。而且第一个数如果不是分数,往往要看成分数,
如2就要看成2/1。
数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度(废话,嘿嘿)。应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难的网友可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。国家