行程问题是公务员行测考试中较难的一类典型题型,也是很多学员难以突破的题型之一。而每年无论是国考、联考或是其他自主命题省份的省考,都会通过行程问题考察考生对于复杂问题的解决能力,以达到区分考生水平和层次的目的。在公务员考试中,行程问题主要包括基本公式、相遇追及、流水行船和电梯运动等问题,而相遇追及问题是考察频率最高、变化最多、入手最难的题型。近年来,相遇追及问题从一次相遇到多次相遇、从直线运动到曲线运动,比例法在解决这类问题中的作用凸显出来。特别是当题目较抽象、已知条件非常少时,方程法固然可用,但是相当复杂的情况下,能够利用比例法在短时间内找到解题的突破口,快速解答。就相遇追及问题中比例法的解题思路作简要阐述。
【例题1】甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要6小时,乙车单独清扫需要9小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫15千米。问东、西两城相距多少千米?( )
A.60千米 B.75千米
C.90千米 D.135千米
【答案】B
【解析】这是一道典型的相遇追及问题。找出等量关系,列出方程求解是可行的,但会非常复杂。比例法, =6:9=2:3,则 一定时, =3:2。相遇时, 一定, =3:2。令甲走了3份距离,乙走了2份距离,多一份距离为15千米。故全程共5份距离,为75千米。
【例题2】A、B两地间有条公路,甲乙两人分别从A、B两地出发相向而行,甲先走半小时后,乙才出发,一小时后两人相遇,甲的速度是乙的2/3。问甲、乙所走的路程之比是多少?
A.5:6 B.1:1
C.6:5 D.4:3
【答案】B
【解析】这是一道非常抽象的相遇追及问题。考虑比例法,1小时后两人相遇, 一定, 故最终 =1:1。
【例题3】甲、乙两人开车同时从A、B两地出发,甲每小时行90千米,乙每小时行60千米,两人在途中C点相遇。如果甲晚出发1小时,两人将在途中D点相遇。且AB两地中点E到C、D两点的距离相等。那么A、B两点间的距离为?( )
A.72 B.108
C.150 D.180
【答案】D
【解析】这同样是一道比较复杂的相遇追及问题。考虑比例法,时间一定, = =90:60=3:2。由于CE=ED=0.5,则D点相遇时甲走了3-0.5-0.5=2份距离,乙走了4/3份距离。故乙先走1小时所走的60千米对应3-4/3=5/3份距离,所以1份距离=60÷5/3=36千米。全程共5份距离,即AB相距180千米。