视觉冲击点4:分式。
类型(1):整数和分数混搭,提示做乘除。
例8:1200,200,40,(),10/3
A.10 B。20 C。30 D。5
解:整数和分数混搭,马上联想做商,很易得出答案为10
类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。
例9:3/15,1/3,3/7,1/2,()
A.5/8 B。4/9 C。15/27 D。-3
解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5 /9,即15/27
例10:-4/9,10/9,4/3,7/9,1/9
A.7/3 B 10/9 C -5/18 D -2
解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得
14,2,-5,-6,(-3.5),(-0.5) 与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18
视觉冲击点5:正负交叠。基本思路是做商。
例11:8/9, -2/3, 1/2, -3/8,()
A 9/32 B 5/72 C 8/32 D 9/23
解:正负交叠,立马做商,发现是一个等比数列,易得出A
视觉冲击点6:根式。
类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内
例12:0 3 1 6 √2 12 ( ) ( ) 2 48
A. √3 24 B.√3 36 C.2 24 D.2 36
解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2 ()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A
类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b)
例13:√2-1,1/(√3+1),1/3,()
A(√5-1)/4 B 2 C 1/(√5-1) D √3
解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1 /(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.