关键提示:
最小公倍数与最大公约数的题一般不难,但一定要细致审题,千万不要粗心。另外这类题往往和日期(星期几)问题联系在一起,考生也要学会求余。
2.核心定义:
(1)最大公约数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。
(2)最小公倍数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的倍数,叫做这几个自然数的公倍数.公倍数中最小的一个大于零的公倍数,叫这几个数的最小公倍数。
例题1:甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城里相遇,那么下次相遇至少要:
A.60天 B.180天 C.540天 D.1620天
解析:下次相遇要多少天,也即求5,9,12的最小公倍数,可用代入法,也可直接求。显然5,9,12的最小公倍数为5×3×3×4=180。
所以,答案为B。
例题2:三位采购员定期去某商店,小王每隔9天去一次,大刘每隔11天去一次,老杨每隔7天去一次,三人星期二第一次在商店相会,下次相会是星期几?
A.星期一 B.星期二 C.星期三 D.星期四
解析:此题乍看上去是求9,11,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,12,8的最小公倍数。10,12,8的最小公倍数为5×2×2×3×2=120。120÷7=17余1,
所以,下一次相会则是在星期三,选择C。
例题3:赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈,丙1分钟跑4圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几分钟,这三匹马自出发后第一次并排在起跑线上?( )
A.1/2 B.1 C.6 D.12
解析:此题是一道有迷惑性的题,“1分钟跑2圈”和“2分钟跑1圈”是不同概念,不要等同于去求最小公倍数的题。显然1分钟之后,无论甲、乙、丙跑几圈都回到了起跑线上。
所以,答案为B。
相关推荐: