首页 - 网校 - 面授 - 团购 - 书城 - 视线 - 模拟考场 - 考友录 - 论坛 - 导航 -
首页考试吧论坛Exam8视线考试商城网络课程模拟考试考友录实用文档求职招聘论文下载
2013中考
法律硕士
2013高考
MBA考试
2013考研
MPA考试
在职研
中科院
考研培训 自学考试 成人高考
四 六 级
GRE考试
攻硕英语
零起点日语
职称英语
口译笔译
申硕英语
零起点韩语
商务英语
日语等级
GMAT考试
公共英语
职称日语
新概念英语
专四专八
博思考试
零起点英语
托福考试
托业考试
零起点法语
雅思考试
成人英语三级
零起点德语
等级考试
华为认证
水平考试
Java认证
职称计算机 微软认证 思科认证 Oracle认证 Linux认证
公 务 员
导游考试
物 流 师
出版资格
单 证 员
报 关 员
外 销 员
价格鉴证
网络编辑
驾 驶 员
报检员
法律顾问
管理咨询
企业培训
社会工作者
银行从业
教师资格
营养师
保险从业
普 通 话
证券从业
跟 单 员
秘书资格
电子商务
期货考试
国际商务
心理咨询
营 销 师
司法考试
国际货运代理人
人力资源管理师
广告师职业水平
卫生资格 执业医师 执业药师 执业护士
会计从业资格
基金从业资格
统计从业资格
经济师
精算师
统计师
会计职称
法律顾问
ACCA考试
注册会计师
资产评估师
审计师考试
高级会计师
注册税务师
国际内审师
理财规划师
美国注册会计师
一级建造师
安全工程师
设备监理师
公路监理师
公路造价师
二级建造师
招标师考试
物业管理师
电气工程师
建筑师考试
造价工程师
注册测绘师
质量工程师
岩土工程师
暖通工程师
造价员考试
注册计量师
环保工程师
化工工程师
给排水工程师
咨询工程师
结构工程师
城市规划师
材料员考试
监理工程师
房地产估价
土地估价师
安全评价师
房地产经纪人
投资项目管理师
环境影响评价师
土地登记代理人
缤纷校园 实用文档 英语学习 作文大全 求职招聘 论文下载 访谈|游戏
您现在的位置: 考试吧 > 公务员考试 > 行政能力 > 数量关系 > 广东 > 正文

2014广东公务员考试行测数量关系:洞悉鸽巢原理

来源:考试吧 2013-12-10 18:56:57 考试吧:中国教育培训第一门户 模拟考场
各地2014年公务员考试报名将陆续开始考试吧整理“2014广东公务员考试行测数量关系:洞悉鸽巢原理”供考生参考备战2014广东公务员考试

  

鸽巢原理

  鸽巢原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有至少2只鸽子”)。它是组合数学中一个重要的原理。

  “任意367个人中,必有生日相同的人。”

  “从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

  “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”... ...

  大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:

  “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”

  比如一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。

  那么对于公务员考试,抽屉原理有哪些应用呢?抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

  例1:同年出生的400人中至少有2个人的生日相同。

  解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/366=1…35,1+1=2 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。

  “从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

  “从数1,2,3,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

  例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理。

  解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。

  上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.

  现在让我们看一道经典国考真题的例子:

  (2007年国家公务员考试行政职业能力测验真题一类题-49题):从一副完整的扑克牌中至少抽出( )张牌,才能保证至少 6 张牌的花色相同。

  A. 21 B. 22 C. 23 D. 24

  同样设想情景:国王将你关押,给你一副牌,每天发一张给国王,当国王拿到6张相同的花色时就处死你,问你怎么发给国王?这时别无选择的你只能拖延时间,那么肯定要先抽俩王,然后每花色抽5张,这样一共能够拖延22天,而第23张便是我们的答案。选C。

  这样换位思考的方法,对于一部分理解传统方法有困难的考生应该会有帮助。其实解决一道题目可以有很多种方法,有很多种思维方式,为了能将题目做的又快又好,我们可以动用我们能够利用的一切资源,包括身边的例子、寓言故事等等,找到最适合自己理解题目的方法,将题目做对,从而战胜公务员考试

1 2  下一页

  相关推荐:

  2014广东公务员考试行测备考:数学运算难题

  2014广东公务员数学运算最新命题趋向及考点预测

  2014广东公务员行测备考:统计表资料分析精讲

文章搜索
在线名师 1 2 3 4
华图公务员考试研究中心申论教研室主任,法学博士,中国社会科学院青年学者。长期从事公务员...详细
公务员考试栏目导航
版权声明:如果公务员考试网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本公务员考试网内容,请注明出处。