方正问题在在公务员考试中并不陌生,难度也不大,关于正方正的题型和解法进行详细解读。方正主要分为实心方正和中空方正,对于实心方正有如下性质:
性质: 相邻两层人数差8,最外圈人数=4(N-1),总人数=N^2
中空方正和实心方正在这3个性质中,只有总人数上的区别,也就是说中空方正的总人数由其层数决定,而不是边的平方。解决方正问题主要就是利用方正的 三个性质进行求解。
【例】用红、黄两色鲜花组成的实心方阵(所有花盆大小完全相同),最外层是红花,从外往内每层按红花、黄花相间摆放.如果最外层一圈的正方形有红花44盆,那么完成造型共需黄花( )
A、48盆 B、60盆 C、72盆 D、84盆
【解析】利用相邻两圈之间,外圈人数总是比内圈人数多8,可知花盆数量分布由外而内分别为44、36、28、20、12、4。由于最外圈是红花,所以偶数项为黄花,黄花总数为36+20+4=60。所以本题选B。
【真题】有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖……这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有( )块。(2012-广东)
A.180 B.196 C.210 D.220
【解析】利用总人数=单边人数的平方即N^2可知N^2=400,N=20,即最外圈绿色花盆=4*(20-1)= 76。根据相邻两层差8,可得出每层的花盆总数76,68,60,52,44,36,28,20,12,4.红色花盆总数=76+60+44+28+12=220。所以本题选D。
当然本题也可以利用“干扰选项”原理进行求解,本题中涉及两种颜色的瓷砖,那么选择中必然会有两种瓷砖的数量来干扰考生,而两种瓷砖的总数为400,观察选项只有180+220=400,所以180和220分别为这两种瓷砖,而绿色在外,所以绿色最多,所以绿色为220块。
公务员行测题库【手机题库下载】丨搜索公众微信号"考试吧公务员"
相关推荐: