三、推理问题
推理问题复杂多变,但都是从给定或隐含条件入手进行推理。把题干给的每一个条件都理解清楚很重要,在每个条件都分析清楚仍不得要领的情况下,要着重分析问题背景隐含的条件。
1.利用题干条件推理
大部分推理问题可根据题干条件直接推理,推理过程需要做简单计算,合理运用代数工具可简化推理过程。
【例题1】一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?
A.4 B.5 C.6 D.7
解析:小张与小李看到数字之和为:顶面数字的2倍+四个侧面数字之和=18+24=42。由于对面两个数的和都等于13,四个侧面数字之和为13×2=26。则顶面数字为(42-26)÷2=8。贴着桌子的底面数字为13-8=5,选B。
2.利用隐含条件推理
在一些较难的推理问题中,线索隐含在题目背景中,找出这个切入点需要对问题背景比较熟悉。
【例题2】小赵、小钱、小孙一起打羽毛球,每局两人比赛,另一人休息。三人约定每一局的输方下一局休息。结束时算了一下,小赵休息了2局,小钱共打了8局,小孙共打了5局。则参加第9局比赛的是( )。
A.小赵和小钱 B.小赵和小孙
C.小钱和小孙 D.以上皆有可能
解析:从中公的命题分析来看,三人约定的游戏规则就是本题的推理规则,应该从理解游戏规则开始。
“每一局的输方下一局休息”,由于每局都会有一个人输,所以相同的两个人不会连续比赛两场;任何一人也不会连续休息两局。还有一点,某人打的总局数等于他和另外两个人分别打的局数之和,某人休息的局数就应该是另外两个人打的局数。
因此{钱vs孙}=2。小钱共打了8局,那么{钱vs赵}=8-2=6。小孙共打了5局,{孙vs赵}=5-2=3。3人总共打了2+6+3=11局。小孙休息了6局,由于休息不能连续,则两次休息之间至少间隔一场,则只能是1、3、5、7、9、11这6局,也就是第9局小孙在休息,小钱和小赵在比赛,本题答案为A。
公务员行测题库【手机题库下载】丨搜索公众微信号"考试吧公务员"
相关推荐: