数字推理题型及讲解
按照数字排列的规律, 数字推理题一般可分为以下几种类型:
一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:
1、全是奇数:
例题:1 5 3 7 ( )
A .2 B.8 C.9 D.12
解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数
2、全是偶数:
例题:2 6 4 8 ( )
A. 1 B. 3 C. 5 D. 10
解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。
3、奇、偶相间
例题:2 13 4 17 6 ( )
A.8 B. 10 C. 19 D. 12
解析:整个数列奇偶相间,偶数后面应该是奇数 ,答案是C
二、排序:题目中的间隔的数字之间有排序规律
1、例题:34,21,35,20,36()
A.19 B.18 C.17 D.16
解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律
1、前两个数相加等于第三个数
例题:4,5,(),14,23,37
A.6 B.7 C.8 D.9
注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;
解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;
2、前两数相加再加或者减一个常数等于第三数
例题:22,35,56,90,() 99年考题
A.162 B.156 C.148 D.145
解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D
四、减法:题目中的数字通过相减,寻找减得的差值之间的规律
1、前两个数的差等于第三个数:
例题:6,3,3,(),3,-3
A.0 B.1 C.2 D.3
答案是A
解析:6-3=3 3-3=0 3-0=3 0-3=-3
2、等差数列:
例题:5,10,15,( )
A. 16 B.20 C.25 D.30
答案是B.
解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;
3、二级等差:相减的差值之间是等差数列
例题:115,110,106,103,()
A.102 B.101 C.100 D.99 答案是B
解析:邻数之间的差值为5、4、3、(2),等差数列,差值为1
4、二级等比:相减的差是等比数列
例题:0,3,9,21,45, ( )
相邻的数的差为3,6,12,24,48,答案为93
例题:-2,-1,1,5,( ),29 ---99年考题
解析:-1-(-2)=1 ,1-(-1)=2,5-1=4,13-5=8,29-13=16
后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是13
5、相减的差为完全平方或开方或其他规律
例题:1,5,14,30,55,( )
相邻的数的差为4,9,16,25,则答案为55+36=91
6、相隔数相减呈上述规律:
例题:53,48,50,45,47
A.38 B.42 C.46 D.51
解析:53-50=3 50-47=3 48-45=3 45-3=42 答案为B
注意:“相隔”可以在任何题型中出现
五、乘法:
1、前两个数的乘积等于第三个数
例题:1,2,2,4,8,32,( )
前两个数的乘积等于第三个数,答案是256
2、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2
例题:6,14,30,62,( )
A.85 B.92 C.126 D.250
解析:6×2+2=14 14×2+2=30 30×2+2=62 62×2+2=126,答案为C
3、两数相乘的积呈现规律:等差,等比,平方,...
例题:3/2, 2/3, 3/4,1/3,3/8 () (99年海关考题)
A. 1/6 B.2/9 C.4/3 D.4/9
解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/8
3/8×?=1/16 答案是 A
六、除法:
1、两数相除等于第三数
2、两数相除的商呈现规律:顺序,等差,等比,平方,...
七、平方:
1、完全平方数列:
正序:4,9,16,25
逆序:100,81,64,49,36
间序:1,1,2,4,3,9,4,(16)
2、前一个数的平方是第二个数。
1) 直接得出:2,4,16,( )
解析:前一个数的平方等于第三个数,答案为256。
2)前一个数的平方加减一个数等于第二个数:
1,2,5,26,(677)前一个数的平方减1等于第三个数,答案为677
3、隐含完全平方数列:
1)通过加减化归成完全平方数列:0,3,8,15,24,()
前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案为6的平方36。
2)通过乘除化归成完全平方数列:
3,12,27,48,()
3, 12,27,48同除以3,得1,4,9,16,显然,答案为75
3)间隔加减,得到一个平方数列:
例:65,35,17,(),1
A.15 B.13 C.9 D.3
解析:不难感觉到隐含一个平方数列。进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,所以下一个数应该是2的平方减1等于3,答案是D.
八、开方:
技巧:把不包括根号的数(有理数),根号外的数,都变成根号内的数,寻找根号内的数之间的规律:是存在序列规律,还是存在前后生成的规律。
九、立方:
1、立方数列:
例题:1,8,27,64,()
解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125。
2、立方加减乘除得到的数列:
例题:0,7,26,63 ,( )
解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124。
十、特殊规律的数列:
1、前一个数的组成部分生成第二个数的组成部分:
例题:1,1/2,2/3,3/5,5/8,8/13,()
答案是:13/21,分母等于前一个数的分子与分母的和,分子等于前一个数的分母。
2、数字升高(或其它排序),幂数降低(或其它规律)。
例题:1,8,9,4,(),1/6
A.3 B.2 C.1 D.1/3
解析:1,8,9,4,( ),1/6依次为1的4次方,2的三次方,3的2次方(平方),4的一次方,( ),6的负一次方。存在1,2,3,4,( ),6和4,3,2,1,( ),-1两个序列。答案应该是5的0次方,选C
公务员行测题库【手机题库下载】丨搜索公众微信号"566公务员"
相关推荐: