在近些年公务员考试行测的数学运算中,经常出现这样的问法:至少.....才能保证......的发生?这种问法让很多考生难以应对自如,考试吧公务员考试网专家认为最不利原则就是快速解决这类问题的关键。所谓的最不利原则,即是考虑最坏的情况,然后再满足题干的要求。下面,考试吧公务员考试网专家就与您一起分享最不利原则在解题中的应用。
例1、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?( )
A. 15 B. 13 C. 10 D. 8
【解析】答案选B。要保证甲当选就要先考虑最坏的情况,由于乙丙两人中乙的票数高一些,所以假设接下来的票优先给乙。已经有30票了,余下的30票先给乙5张,让乙和甲的票数一样,这样还余下25张票。若要保证甲当选,则甲的票至少比乙多1张,所以甲还需要13张。即甲至少再得13张就一定能够当选。因此选择B。
例2、有一排长椅总共有65个座位,其中已经有些座位上有人就坐。现在又有一人准备找一个位置就坐,但是此人发现,无论怎么选择座位,都会与已经就坐的人相邻。问原来至少已经有多少人就坐?( )
A.13 B.17 C.22 D.33
【解析】答案选C。题目的问题可以转化为至少有多少人就坐,才能保证无论怎么选择座位,都会与已经就坐的人相邻。根据问法应该让就做的人尽量少,假设A代表有人入座,B代表空座,则最坏的情况是B A B B A,显然这样不管坐在哪个空位上,都会与别人相邻,继续往后面排位B A B B A B B A B ...,3个一个循环,65÷3=21…2。最后一个循环和余数入座情况为 B A B B B。显然后两个作为必须有一个人就座。所以最好就座的人数为22人。选择C。
例3、箱子里有大小相同的3种颜色玻璃珠各若干个,每次从中摸出3颗为一组,问至少要摸出多少组,才能保证至少有2组玻璃球的颜色组合是一样的?
A. 11 B. 15 C. 18 D. 21
【解析】答案选A。要保证有两组玻璃球的颜色是一样的,最坏的情况是每组求的颜色都不一样,所以只要理清一共有多少种颜色组合就行了,假设三种颜色分别是A、B、C。若三种球颜色一样有三种组合(AAA、BBB、CCC),如果三种球有两种颜色,共有六种组合(AAB、AAC、BBA、BBC、CCA、CCB),若三种球有三种颜色,则只有一种组合(ABC)。所以不同的组合一共有10种,那么至少要摸11颗球才能保证有两组球颜色组合一样,答案选择A。
从以上考试吧公务员考试网专家列举的几个例子可以发现,当题目问到至少......才能保证......发生,我们必须要用最不利原则,而应用的思路也很简单:我们就先不考虑题目中的要求,而是把最坏的情况算进来,再去满足题目要求就可以了。
关注"566公务员"官方微信,获取最新资讯、职位表、真题答案等信息!
相关推荐: