【例3】甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。如果同样的签字笔、圆珠笔、铅笔各买一支,共用多少钱?
A.21元 B.11元 C.10元 D.17元
【答案】C
【解析】分别设签字笔、圆珠笔和铅笔的单价为x、y、z,则根据题意可列方程组:
通过②可知,z一定为奇数,再根据①可知,x、y中必有一个是奇数,一个是偶数,所以(x+y+z)一定为偶数,选择C项。
【例4】共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有( )个。
A.2 B.3 C.5 D.7
【答案】A
【解析】设小王制作的玩具合格的有x个,不合格的有y个,未完成的有z个,则存在等量关系是x+y+z=20,5x-2y=56。根据数的整除特性、尾数法和奇偶性可知,2y为偶数,56为偶数,所以5x肯定也是偶数,尾数必为0,所以2y的尾数是4,即y取2或者7。当y=2时,x=12,满足题意;当y=7时,x=14,x+y>20,与题意不符,所以不合格的有2个,A为正确选项。
【例题5】小王、小李、小张和小周4人共为某希望小学捐赠了25个书包,按照数量多少的顺序分别为小王、小李、小张、小周。已知小王捐赠的书包数量是小李和小张捐赠书包的数量之和;小李捐赠的书包数量是小张和小周捐赠的书包数量之和。问小王捐赠了多少书包?
A.9 B.10 C.11 D.12
【答案】C
【解析】分别设小张和小周捐的书包数量为x、y,则小李是x+y,小王是2x+y。根据题意4x+3y=25,则y一定是奇数,y=1,3,5,7,代入验证,当y=3,x=4和y=7,x=1方程成立,根据题意,书包的数量小王>小李>小张>小周,所以只有y=3,x=4满足题意,则小王的数量2x+y=11。
考试吧公务员考试网认为,不定式方程通常对考生的思维以及解题的灵活性要求比较高,所以需要不断地练习,从而熟悉以上集中常见的解题方法,从而保证在考试当中遇到这样的问题能迅速解题。
相关推荐: