长按下面二维码即可 |
长按下面二维码即可 |
在行测考试中,不定方程一直是一个重要而固定的考点,在不定方程中我们会发现,这一类题目题干描述得比较清晰,对题目的理解往往不会存在很多的问题,列式也比较简单,但是在解不定方程的过程中,考生们往往感觉束手无策。今天考试吧公务员考试网就不定方程来为各位考生分析三种常见的解题方法。
例:去商店买东西,如果买7件A商品,3件B商品,1件C商品,一共需要50元,如果是买10件A商品,4件B商品,1件C商品,一共需要69元,若A、B、C三种商品各买2件,需要多少钱?
A.28元 B.26元 C.24元 D.20元
【解析】
很明显,根据题意我们可以很简单地列出方程表达式:
7A+3B+C=50;10A+4B+C=69
解法一:凑配法
根据问题,我们其实只需要算出A+B+C等于多少即可,所以第一个式子乘以3,第二个式子乘以2,相互做差即可得到A+B+C=3×50-2×69=12,故各买两个,答案为24,选C。这种方法需要考生对数字有比较好的敏感度。
解法二:特值法
设A=0,式子1变为:3B+C=50;式子2变为:4B+C=69
可以解出B为19,C为-7,故2(A+B+C)=24
解法三:方程法
设所求的(A+B+C)为x,故式子1变为:x+6A+2B=50;式子2变为:x+9A+3B=69
同样设3A+B为y,那么可以算出y为19,x为12,那么所求的即为2x等于24。
在对不定方程的学习过程中,考试吧公务员考试网希望考生不断练习以上三种方法,达到成熟灵活运用的程度。这样,以后再复杂的不定方程都能够快速求解!
相关推荐: