长按下面二维码即可 |
长按下面二维码即可 |
隔板模型本质为相同元素分不同堆的问题,这类问题的描述类似于:把6个苹果
分给甲乙丙三个不同的小朋友,每个小朋友至少一个的分法总共有多少种?那么可以假设6个苹果“站”在甲乙丙三个人的前面,只要在6个苹果中间插入两个相同的板那么就可以把苹果分成三堆,其中第一堆默认分给甲,第二堆默认分给乙,第三堆默认分给丙,根据两个板插入位置的不同,各种分法都能够出现,所以总的分法就为:5个空当中插入两个板,即为 。拓展一下即为:把n个相同元素分给m个不同的对象,每个对象至少1个元素,则有 种不同分法。
例1:某单位订阅了 30 份学习材料发放给 3 个部门,每个部门至少发放 9 份材料。问一共有多少种不同的发放方法?
A.7 B.9 C.10 D.12
【解析】
此题为相同元素分推问题,为第一种变形题,其所不同的公式中的使用条件为至少1个,此题为至少9个,故不能直接套用。那么需要转化,第一步要均分到三个部门的材料数为8×3=24(份),因为材料一样,分法数为1种;第二步转化为30-24=6份分3个部门,至少1个,则方法数为 =10,选C。
例2:刘老师有 10 支一模一样的铅笔,想要分给四个学生,他还没有想好每个学生分几支,问刘老师可能的分法有几种?
A.285 B.286 C.287 D.288
【解析】
此题为相同元素分推问题,为第二种变形题,其所不同的公式中的使用条件为至少1个,此题为至少0个,故不能直接套用。那么需要转化,第一步为向4个学生的都借1支,因为材料一样,借法数为1种;第二步转化为10+4=14份分3个部门,至少1个,则方法数为 =286,选B。
我们在考试中经常碰到此类隔板模型,需要对题目进行适当转化,使之变成大家常见的形式,就能简化运算达到快速解题的目的,考试吧公务员考试网希望考生能够多总结,再不断辅以练习,相信这类题型将不再是大家备考路上的“拦路虎”。
相关推荐: