扫描/长按下面二维码 |
扫描/长按下面二维码 |
点击查看:2018年国家公务员考试《行测》备考指导
一、考情分析
牛吃草问题虽然现在出现的频率没有那么高了,但是在近几年的国家公务员考试中还是偶有出现,因此大家仍然不可以忽略这种题型。牛吃草问题本身难度就很大,近期考查中又出现了多种变形,因此需要考生更加细致地去掌握这些知识。
二、基本概念
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的总量随牛吃的天数不断地变化。
牛吃草问题存在两个不变量:草地最初的总草量和每天生长出来的草量。
三、技巧方法
(一)推导法
推导法的步骤:
①假设1头牛1天吃的草量为1,根据不同头数的牛所吃草的天数不同,计算出草地每天长草的量;
②计算草地原有的草量;
③计算所求的牛吃草的天数。
(二)公式法
四、例题精讲
例题1:有一个牧场,每天都生长相同数量的草,若放50头牛,则9天吃完牧场的草;若放40头牛,则12天吃完。问若放30头牛,则多少天吃完?
A.15 B.18 C.20 D.24
解析:设每头牛每天吃的草量为1,则每天长的草量为(40×12-50×9)÷(12-9)=10,最初的草量为(50-10)×9=360。若放30头牛,则360÷(30-10)=18天吃完。
例题2:牧场有一片青草,每天生长速度相同。现在这片牧场可供16头牛吃20天,或者供80只羊吃12天,如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊—起吃可以吃多少天?
A.7 B.8 C.12 D.15
解析:题干中存在两种动物,计算时很不方便,根据“一头牛一天吃草量等于4只羊一天的吃草量”,将所有动物转化为牛,从而将原问题转化为标准问题:“牧场有一片青草,每天生成速度相同。现在这片牧场可供16头牛吃20天,或者供20头牛吃12天,那么25头牛一起吃可以吃多少天?”
设每头牛每天的吃草量为1,则每天的长草量为(16×20-20×12)÷(20-12)=10,原有的草量为(16-10)×20=120,故可供25头牛吃120÷(25-10)=8天。
例题3:有一片牧场,24头牛6天可以将草吃完,21头牛8天可以将草吃完,要使牧草永远吃不完,至多可以放牧多少头牛?
A.8 B.10 C.12 D.14
解析:要使牧草永远吃不完,那么牛最多只能吃完每天所长的草量。设每头牛每天吃的草量为1,则每天新长的草量为(21×8-24×6)÷(8-6)=12,可最多供12头牛吃1天,因此要使牧草永远吃不完,至多可放牧12头牛。
例题4:一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量。在该市新迁入3万人之后,该水库只够维持15年的用水量。市政府号召节约用水,希望能将水库的使用寿命提高到30年。那么,该市市民平均需要节约多少比例的水才能实现政府制定的目标?
相关推荐: