扫描/长按下面二维码 |
扫描/长按下面二维码 |
点击查看:2018年国家公务员考试《行测》备考指导
释义:图解法是指利用图形来解决数学运算的方法,将复杂的数字之间的关系用图形形象地表示出来,能够更快更准地解决问题。
适用范围:一般说来,图解法适用于绝大部分题型,尤其是在行程问题、年龄问题、容斥问题等强调分析过程的题型中运用得很广。
图解法就是利用图形来解决数学运算的方法。图解法简单直观,能够清楚表现出问题的过程变化。一般说来,图解法适用于绝大部分题型,尤其是在行程问题、年龄问题、容斥问题等强调分析过程的题型中运用得很广。
图解法运用的图形包括线段图、网状图/树状图、文氏图和表格等。
线段图即是用线段来表示数字和数量关系的方法。一般情况下,我们会用线段来表示量与量之间的倍数关系或者整个运动过程等,来解决和差倍比问题、行程问题等。线段图在行程问题中非常有效,因为它能够帮助考生快速理清各物体的运动过程,从而找到物体速度或者路程之间的关系。
网状图或树状图一般用来解决过程或者数量关系比较复杂的题型,比如排列组合问题、推理问题或者时间安排类的对策分析问题。
文氏图就是用圆圈来表示一类事物的图形,一般只有容斥问题会用到文氏图。
利用表格可以将多次操作问题和还原问题中的复杂过程一一表现出来。同时,我们也可以用表格来理清数量关系,帮助列方程。
例题:草地上插了若干根旗杆,已知旗杆的高度在1至5米之间,且任意两根旗杆的距离都不超过他们高度差的10倍。如果用一根绳子将所有旗杆都围进去,在不知旗杆数量和位置的情况下,最少需要准备多少米长的绳子?
A.40 B.60 C.80 D.100
解析:旗杆最高为5米,最矮为1米。因此任意两旗杆间的距离不超过(5-1)×10=40米。以最矮的旗杆为原点,最矮的旗杆与最高的旗杆连线为x轴建立直角坐标系。
当这两个旗杆间距最大时,如下左图所示。设其余任意旗杆高度为a。要满足与1米旗杆间距离不超过它们高度差的10倍,应在下图左边的圆范围内。要满足与5米旗杆间距离不超过它们高度差的10倍,应在下图右边的圆范围内。同时满足条件的旗杆只能位于两个旗杆的连线上。此时需要40×2=80米可把它们都围进去。
草地上插了若干根旗杆,已知旗杆的高度在1至5米之间,且任意两根旗杆的距离都不超过他们高度差的10倍。如果用一根绳子将所有旗杆都围进去,在不知旗杆数量和位置的情况下,最少需要准备多少米长的绳子?
A.40 B.60 C.80 D.100
解析:旗杆最高为5米,最矮为1米。因此任意两旗杆间的距离不超过(5-1)×10=40米。以最矮的旗杆为原点,最矮的旗杆与最高的旗杆连线为x轴建立直角坐标系。
当这两个旗杆间距最大时,如下左图所示。设其余任意旗杆高度为a。要满足与1米旗杆间距离不超过它们高度差的10倍,应在下图左边的圆范围内。要满足与5米旗杆间距离不超过它们高度差的10倍,应在下图右边的圆范围内。同时满足条件的旗杆只能位于两个旗杆的连线上。此时需要40×2=80米可把它们都围进去。
若两个旗杆间距小于40米,如右图所示,其余旗杆应该在两圆相交的阴影范围内分布,此时需要2×[10(a-1)+10(5-a)]=80米。因此不论旗杆怎样分布,都需要至少80米长的绳子来保证把全部旗杆围进去。
相关推荐: