首页 考试吧论坛 Exam8视线 考试商城 网络课程 模拟考试 考友录 实用文档 求职招聘 论文下载 | ||
2011中考 | 2011高考 | 2012考研 | 考研培训 | 在职研 | 自学考试 | 成人高考 | 法律硕士 | MBA考试 MPA考试 | 中科院 |
||
四六级 | 职称英语 | 商务英语 | 公共英语 | 托福 | 雅思 | 专四专八 | 口译笔译 | 博思 | GRE GMAT 新概念英语 | 成人英语三级 | 申硕英语 | 攻硕英语 | 职称日语 | 日语学习 | 法语 | 德语 | 韩语 |
||
计算机等级考试 | 软件水平考试 | 职称计算机 | 微软认证 | 思科认证 | Oracle认证 | Linux认证 华为认证 | Java认证 |
||
公务员 | 报关员 | 银行从业资格 | 证券从业资格 | 期货从业资格 | 司法考试 | 法律顾问 | 导游资格 报检员 | 教师资格 | 社会工作者 | 外销员 | 国际商务师 | 跟单员 | 单证员 | 物流师 | 价格鉴证师 人力资源 | 管理咨询师考试 | 秘书资格 | 心理咨询师考试 | 出版专业资格 | 广告师职业水平 驾驶员 | 网络编辑 |
||
卫生资格 | 执业医师 | 执业药师 | 执业护士 | ||
会计从业资格考试(会计证) | 经济师 | 会计职称 | 注册会计师 | 审计师 | 注册税务师 注册资产评估师 | 高级会计师 | ACCA | 统计师 | 精算师 | 理财规划师 | 国际内审师 |
||
一级建造师 | 二级建造师 | 造价工程师 | 造价员 | 咨询工程师 | 监理工程师 | 安全工程师 质量工程师 | 物业管理师 | 招标师 | 结构工程师 | 建筑师 | 房地产估价师 | 土地估价师 | 岩土师 设备监理师 | 房地产经纪人 | 投资项目管理师 | 土地登记代理人 | 环境影响评价师 | 环保工程师 城市规划师 | 公路监理师 | 公路造价师 | 安全评价师 | 电气工程师 | 注册测绘师 | 注册计量师 |
||
缤纷校园 | 实用文档 | 英语学习 | 作文大全 | 求职招聘 | 论文下载 | 访谈 | 游戏 |
第二部分 数量关系
一、数字推理
26.C 【解析】2=1×2,4=2×2,12=3×4,48=4×12,由此可见,每个数都是由相邻的前面的数乘以自己所排列的位数,所以第5位数就应该是5×48=240。
27.D 【解析】数列中后一个数字与前一个数字之间的商形成一个等差数列:1÷1=1,2÷1=2,6÷2=3,以此类推,第5个数与6之间的商应该是4,所以6×4=24。
28.C 【解析】相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差也是以2为首项,公差为2的等差数列。由此可以推导答案为C。
29.B 【解析】后一个数字与前一个数字之间的差是一个以1为首项,3为公比的等比数列,由此推断所填的数字是14+27=41。
30.C 【解析】通过分析可知13=7+(2+4),7=4+(1+2),4=2+(1+1),2=1+(1+0),也就是说,后一项等于前一项加上前两项之和的和,那么所填的数字就是13+(7+4)=24。
31.A 【解析】1=1×1,4=2×2,16=4×4,49=7×7,121=11×11,而1,2,4,7,11之间的差(1,2,3,4)又是一个以1为首项,1为公差的等差数列,由此推断所填的数字是16×16=256。
32.C 【解析】2=1×1+1,3=2×2-1,10=3×3+1,15=4×4-1,26=5×5+1,由此可见所填的数字应该是6×6-1=35。
33.C 【解析】相邻两个数字之间的差是9,21,39,63,而9=3×3,21=3×7,39=3×13,63=3×21,而3,7,13,21是一个以4位首项,2为公差的等差数列,由此可见,所填的数字是(21+10)×3+133=226。
34.A 【解析】本数列规律为每项自身的乘方减去前一项的差等于下一项,即12-0=1,22-1=3,32-2=7,72-3=46,462-7=2109,故选A。
35.C 【解析】相邻两个数字之间的差分别是1,2,5,14,41,而这个新数列相邻两个数字之间的差形成新的一个以1为首项,3为公比的等比数列,由此可见,所填的数字是81+41+63=185。
二、数学运算
36.D 【解析】首先目测可以知道3/7、17/35和101/203都小于1/2,而4/9和151/301都大于1/2,所以只要比较二者的大小就可以,通过计算,151/301大,所以选择D。
37.A 【解析】计算过程中利用4×25=100,15×5=75等数学常识。
38.A 【解析】本题可用举例法。通过分析可知,偶数个的1999相乘,末尾数字都是1,奇数个则为9。
39.C 【解析】要使邮票最少,则要尽量多的使用大面额邮票,所以要达到总价值,2角的邮票要使用4张,1角的邮票要使用1张,8分的邮票要4张,这样使总价值正好为1元2角2分,所以要用9张。
40.A 【解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。
41.C 【解析】2003年7月1日至2005年7月1日相差天数为731天,每星期为7天,731/7=104还余下3天。所以在周三的基础上加两天,为周五。故选C。(注:2004年为闰年共366天)
42.C 【解析】设单位为圈,即S=2,那么V甲=1=7/7,V乙=1+1/7=8/7,V丙=1-1/7=6/7,当乙到终点时,S2=2,那么所需的时间t=S2/V2=2÷8/7=7/4,那么S甲=1×7/4,S丙=6/7×7/4=6/4,则S甲-S丙=1/4圈,而一圈有400米,所以相差的距离是100米。
43.B 【解析】21V顺+4V逆=12V顺+7V逆,9V顺=3V逆,则V顺V逆=3。
44.C 【解析】设三角形每条边X,正方形为Y,那么Y=X-5,同时由于硬币个数相同,那么3X=4Y,如此可以算出X=20,则硬币共有3×20=60个,硬币为5分硬币,那么总价值是5×60=300(分),得出结果。
45.A 【解析】本题可以使用阴影覆盖法。
46.D 【解析】使用代入法,设经历了X个小时,标准时间为Y,那么10-X=Y,9+3X=Y,将选项代入,即可得出结论。
47.B 【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20,电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。
48.C 【解析】这是一个排列组合题。由题可知,三个数要么都为偶数,要么至少有两个奇数,三个奇数的情况是不存在的,所以计算公式为:P25+P34=5×4+4×3×2=20+24=44。
49.B 【解析】甲-4=甲-乙,67-甲=甲-乙,则甲=46,乙=25。
50.A 【解析】东欧人为10人,又占欧美代表2/3以上,那么欧美代表至少有15人,而欧美代表又占总数的2/3以上,那么与会代表至少有22人。
国家 | 北京 | 天津 | 上海 | 江苏 |
安徽 | 浙江 | 山东 | 江西 | 福建 |
广东 | 河北 | 湖南 | 广西 | 河南 |
海南 | 湖北 | 四川 | 重庆 | 云南 |
贵州 | 西藏 | 新疆 | 陕西 | 山西 |
宁夏 | 甘肃 | 青海 | 辽宁 | 吉林 |
黑龙江 | 内蒙古 |