首页 - 网校 - 万题库 - 美好明天 - 直播 - 导航
您现在的位置: 考试吧 > 教师资格考试 > 复习指导 > 综合素质 > 正文

2016教师资格考试《小学综合素质》考点速记(17)

来源:考试吧 2016-06-16 11:08:25 要考试,上考试吧! 教师资格万题库
考试吧整理“2016年教师资格考试《小学综合素质》考点速记”,更多关于教师资格考试复习指导,请访问考试吧教师资格考试网。

  4.概括和限制

  具有种属关系的概念的内涵与外延之间存在这样的关系:内涵较少的概念外延较大,内涵较多的概念外延较小。如“学生”和“中学生”相比,前者内涵比后者少,其外延比后者大。“学生”和“人”相比,前者内涵比后者多,其外延比后者小。

  (1)限制

  限制是通过增加内涵,缩小外延,从属概念得到其种概念的逻辑方法,所以必须在有种属关系的概念之间进行。如:“亚洲”不能限制为“东南亚”,因为两者不是种属关系。单独概念没有种概念,不能限制。如“螳螂”不能限制为“捕食的螳螂”。

  (2)概括

  概括是通过减少内涵,扩大外延,从种概念得到其属概念的逻辑方法。概括也必须在具有种属关系的概念间进行。如“草”能概括为“植物”,不能概括为“草原”。因为“草”和“植物”是种属关系,而“草”和“草原”是部分与整体的关系。最大类概念没有属概念,因而不能概括。如“事物”是最大类概念,不能概括。

  (二)命题

  判断是对思维对象有所断定的思维形式,是通过语句来表达的,表达判断的语句,又称作命题。例如,①宪法是国家的根本大法;②语言不是上层建筑。这两个例子就是两个命题。例①肯定“宪法”具有“国家根本大法”的属性;例②否定“语言”具有“上层建筑”的属性。

  在思维活动中,人们所要认识的事物是多种多样的,因而反映事物真假情况的命题也是多种多样的。根据不同的划分标准,可以对命题进行不同的分类。

  根据命题中是否包含有“必然”“可能”等模态词,将命题划分为模态命题和非模态命题。

  1.模态命题

  模态命题是包含有“必然”“可能”等模态词的命题,反映事物情况必然性的命题为必然命题,而反映事物情况可能性的命题为可能命题。如“今天必然要下雪”和“宇宙中可能有外星人”都属于模态命题,分别是必然命题和可能命题。

  2.非模态命题

  非模态命题是指不含有模态词的命题。根据是否包含有其他命题,将其划分为简单命题和复合命题。

  (1)简单命题

  简单命题是本身不再包含其他命题的命题。如“小王不懂计算机知识”。

  (2)复合命题

  复合命题是由两个或两个以上的简单命题通过一定的逻辑联结词结合而成的命题。组成复合命题的简单命题叫做肢命题。复合命题根据其逻辑联结词的不同性质可以分为联言命题、选言命题、假言命题和负命题四种。

  ①联言命题

  联言命题是对几种事物情况同时加以断定的复合命题。如“前途是光明的,但道路是曲折的。”其一般形式为:“P且q”,P和q分别是其两个肢命题。

  联言命题的逻辑性质:当一个联言命题的全部肢命题都为真时,这个联言命题为真;当它的肢命题至少有一个为假时,这个联言命题为假。

  ②选言命题

  选言命题是断定在几种事物情况中至少有一种情况存在的复合命题。如“或者你听错了,或者我说错了。”根据各个肢命题之间能否相容并存,将选言命题分为相容选言命题和不相容选言命题。相容选言命题的一般形式为“P或q”;不相容选言命题的一般形式为“要么P,要么q”。

  相容选言命题的逻辑性质:一个相容选言命题要为真,至少有一肢命题为真;只有在所有的肢命题都为假时,这个相容选言命题才为假。

  不相容选言命题的逻辑性质:一个不相容选言命题要为真,有且只能有一个肢命题为真;有几个为真或者全真、全假的情况下,这个不相容选言命题都是假的。

  ③假言命题

  假言命题就是断定一事物情况是另一事物情况存在的条件的命题。每个假言命题包括两个肢命题,其中表示条件的肢命题称作前件,表示结果的肢命题称作后件。如“如果银行降低存款利率,那么股票价格就会上升。”其中“银行降低存款利率”是前件,“股票价格会上升”是后件。根据断定事物情况存在条件的不同,将假言命题分为充分条件假言命题和必要条件假言命题。充分条件假言命题的一般形式为“如果p,那么q”,必要条件假言命题的一般形式为“只有p,才q”。

  充分条件假言命题的逻辑性质:只有在“前件真且后件假”的情况下该命题为假,其他情况下都为真。

  必要条件假言命题的逻辑性质:只有在“前件假且后件真”的情况下该命题为假,其他情况下都为真。

  ④负命题

  负命题是由否定某一个命题而构成的命题。如“并非所有的人都是自私的。”其一般形式为“并非P”。

  负命题的逻辑性质:负命题与其原命题是矛盾关系,即当原命题为真时其负命题为假,当原命题为假时其负命题为真。

  以上命题的负命题分别如下:

  并非“P且q”=非P或者非q

  并非“P或q”=非P并且非q

  并非“要么p,要么q”=“非P且非q”或者“P且q”

  并非“如果p,那么q”=p且非q

  并非“只有p,才q”=非P且q

  并非“并非P”=D

  (三)推理

  人们在思维过程中,总是根据已有的知识,反映更为复杂的事物之间的联系,从而扩大认识领域,获得新的知识。这是一种由已知推断未知的思维活动,而反映这种思维活动的思维形式就是推理。

  1.推理的结构

  推理是由一个或几个已知命题推出新命题的思维形式。

  每个推理都包含着两部分的命题:一部分是已知的命题,它是推理的根据,叫做推理的前提;另一部分是由此而推导出的命题,叫做推理的结论。逻辑学主要研究推理过程中前提和结论之间的关系。

  【示例】

  只有努力学习,才能考上大学;

  小王考上大学;

  小王努力学习。

  上例就是一个复合推理,其中前两个命题属于推理的前提,后一个命题是推理的结论。

  2.推理的分类

  (1)演绎推理

  ①演绎推理的定义

  演绎推理是从一般性原理出发,引申出特殊性结论的推理。这种推理的推导方向,是由一般到个别。

  例如,凡生物都有新陈代谢;

  藻类是生物;

  所以,藻类有新陈代谢。

  演绎推理的前提是比结论更一般的判断,因此推出的结论并没有超出前提所判定的范围。换句话说,结论是可以由前提必然地推导出来的,所以它是一种必然性的推理。

  ②演绎推理的种类

  ③简单命题推理

  简单命题推理是指自身不包含其他命题的推理。它包括直接推理、三段论推理和关系推理。

  a.直接推理

  直接推理是以一个已知命题为前提,推出另一个新命题为结论的演绎推理。如:所有的学生都是质朴的。

  所以,有些质朴的是学生。

  b.三段论推理

  三段论推理就是借助一个共同概念把两个直接推理联结起来,从而得出结论的演绎推理。如:所有优秀的教师都是有爱心的教师。

  王老师是一名优秀教师,

  所以,王老师是有爱心的教师。

  c.关系推理

  关系推理指前提中至少有一个关系命题的推理,它是根据前提中关系命题的逻辑性质进行推演的。如:

  小李比小王年龄大。

  小王比小张年龄大。

  所以,小李比小张年龄大。

  ④复合命题推理

  复合命题推理就是在前提或结论中包含复合命题,并依据复合命题的逻辑性质进行推演的推理。如:

  如果一名教师是没有爱心的,那么他就不能成为一名合格的教师。

  张老师没有爱心,

  所以,张老师不能成为一名合格的教师。

  a.联言命题推理:是指前提或结论为联言命题,并且根据联言命题联结项的逻辑性质推出结论的演绎推理。

  联言命题推理的规则:由一个联言推理为真可以推出每一个肢命题为真;各个肢命题都为真,整个联言命题也就为真。如:“数学和语文都是小学阶段的重要学科。”这个联言命题为真,推出“数学是小学阶段的重要学科”和“语文是小学阶段的重要学科”都为真。

  b.选言命题推理:前提中至少有一个是选言命题,并且根据选言命题的逻辑性质推出结论的演绎推理。

  选言命题推理的规则:对于相容选言命题推理,肯定一部分选言肢,不能否定或肯定其他选言肢;否定一个选言肢以外的其他选言肢,可以肯定未被否定的那个选言肢。对于不相容选言命题推理,肯定一个选言肢,可以否定其他选言肢;否定一个选言肢以外的选言肢,可以肯定未被否定的这个选言肢。如:

  Ⅰ.张华考试不合格,或者是因为他平时不努力,或者是因为他考试时发挥失常。现在肯定张华平时非常努力,可以推出:张华这次考试发挥失常。

  Ⅱ.这次数学竞赛,要么李莉参加,要么冯杰参加。如果李莉没有参加,可以推出:冯杰参加了。

  c.假言命题推理:前提中至少有一个为假言命题,并且根据假言命题的逻辑性质推出结论的演绎推理。如:

  一个人只有多读书,才能明事理。我要明事理。

  所以,我要多读书。

  假言命题推理的规则:对于充分条件假言命题推理,肯定前件就肯定后件,否定后件就否定前件;对于必要条件假言命题推理,否定前件就否定后件,肯定后件就肯定前件。如:

  1.“如果天下雨,那么就地湿。”肯定下雨,则肯定地湿;否定地湿,则否定下雨。

  11.“只有知己知彼,才能百战不殆。”否定知己知彼,则否定百战不殆;肯定百战不殆,就肯定知已知彼。

  d.综合命题推理:本书所指就是假言选言推理.它是由两个假言命题和一个选言命题作前提,推出结论的演绎推理。如:如果考试有这样一道题,那么赵鑫肯定得不了满分;

  如果考试没有这样一道题,那么赵鑫也得不了满分;

  实际上考试或者有这样一道题,或者没有这样一道题,

  总之,赵鑫都得不了满分。

  (2)归纳推理

  ①归纳推理的定义

  归纳推理是指从一系列个别性的判断出发,引申出一般性结论的推理。这种推理的推导方向是由个别到一般。

  ②归纳推理的分类

  归纳推理按照其推理的前提中是否考查了一类事物的全部,可以分为完全归纳推理和不完全归纳推理。不完全归纳推理,又分为简单枚举归纳推理和科学归纳推理。此外.还有概率归纳推理和溯因归纳推理。

  需要注意的是,归纳推理中的“完全”和“不完全”是相对的,它是就推理前提的数量方面来说的。所谓“完全”是从整体上来对一类对象的全体加以考查;所谓“不完全”则是从局部(部分)上来对一类对象的全体加以推断。因此,它只具有相对的意义。

上一页  1 2 3 4 下一页

  相关推荐:

  2016教师资格《小学综合素质》各类试题汇总 | 《小学综合素质》提分卷汇总

  2016教师资格《小学教育教学知识》模拟试题热点文章 | 《小学综合素质》模拟试卷

  2016年教师资格证《各科目》考点速记汇总 | 教师资格《各科目》考情分析汇总

  各地教师资格考试报名入口及官方网站  | 各地2016年教师资格考试科目汇总

  各地2016年教师资格考试报名时间汇总  | 各地2016年教师资格考试时间汇总

0
收藏该文章
0
收藏该文章
文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
中学综合素质
共计380课时
讲义已上传
19856人在学
中学教育知识与能力
共计550课时
讲义已上传
48797人在学
小学综合素质
共计118课时
讲义已上传
22020人在学
小学教育知识与能力
共计630课时
讲义已上传
38639人在学
幼儿综合素质
共计399课时
讲义已上传
34431人在学
推荐使用万题库APP学习
扫一扫,下载万题库
手机学习,复习效率提升50%!
版权声明:如果教师资格考试网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本教师资格考试网内容,请注明出处。
Copyright © 2004- 考试吧教师资格考试网 出版物经营许可证新出发京批字第直170033号 
京ICP证060677 京ICP备05005269号 中国科学院研究生院权威支持(北京)
在线
咨询
官方
微信
关注教师资格微信
领《大数据宝典》
报名
查分
扫描二维码
关注教师报名查分
下载
APP
下载万题库
领精选6套卷
万题库
微信小程序