本次教资面试试题来源于学员回忆,与真实试题存在偏差,仅供参考。
初中数学《有理数加减法则》
一、考题回顾
二、考题解析
【教学过程】
(一)导入新课
提出问题:
【板书设计】
【答辩题目解析】
1.有理数加法法则和有理数减法法则的关系?
【参考答案】
有理数加法的学习是有理数减法法则学习的基础,有理数加法法则分别阐述了同号、异号、加0三种情况的有理数相加的计算方法,而有理数的减法法则是将被减数取相反数转化成有理数加法进行计算的,二者具有递进关系。
2.学习有理数加减法则的意义?
【参考答案】
有理数加减法则是学习初中数学运算的基础,是引入整式、分式的准备知识。有理数加减法则的正确掌握有助于拓展学生的数感,是学习有理数乘除法前提,并且直接影响整式分式运算的学习。
初中数学《中位数的应用》
一、考题回顾
二、考题解析
【教学过程】
(一)导入新课
复习导入:课件展示问题2中某公司员工月收入数据资料表格。提问:如何得到数据的平均水平?
预设:平均数。
追问:是否还有其他量可以刻画相关数据特征?
引出本节课课题——中位数的应用。
(二)讲解新知
1.中位数的概念
沿用导入环节的情境,根据表格信息解决问题。
问题:计算员工收入的平均数。
预设:平均数是6276。
提问:计算的平均数能否反映该公司全体员工的收入水平?为什么?
学生思考,和同桌交流,汇报。
预设1:不能反映这组数据的平均水平。因为人员收入差距较大。
预设2:不能反映这组数据的平均水平。仅有3人收入在平均数上,另外22人在平均数下。
追问:那用什么数据来表示更好呢?
启发学生思考。教师给出中位数的概念并板书,让学生根据中位数的概念得到找中位数的方法,尝试找到这组数据的中位数(板书计算过程)。
教师追问:中位数能否反映该公司全体员工的收入水平?为什么?
预设:中位数能反映该公司全体员工的收入水平。因为将数据按顺序排列取中间的数字,也是平均水平的体现。
教师追问:本题中,平均数与中位数哪个能更好得反映这组数据的平均水平?什么时候用中位数反映一组数据的平均水平的量?
小组讨论:以数学小组为单位,4分钟时间。讨论结束后请小组派代表分享,全班交流结果。
预设1:本题中,对比平均数,中位数能更好反映这组数据的平均水平。
预设2:当一组数据中有偏大或偏小的数据时,用中位数更能反映一组数据的一般水平。
(三)课堂练习
课件出示另一组数据,计算中位数。并说明中位数的意义。
(四)小结作业
小结:通过这节课的学习,你有什么收获?
作业:课后习题。
【板书设计】
【答辩题目解析】
1.怎么确定一组数据的中位数?什么时候用中位数反映数据的平均水平?
【参考答案】
求中位数时,首先进行数据的排序,然后分数据个数为奇数与偶数两种情况。总数个数是奇数的话,取中间的那个数为中位数;总数个数是偶数的话,取中间那两个数的平均数为原数据的中位数。
当一组数据中有偏大或偏小的数据时,用中位数更能反映一组数据的一般水平。
2.常见数学思想有哪些?
【参考答案】
数形结合思想、转化思想、分类讨论思想、类比思想、函数方程思想、整体思想、极限思想等。
初中数学《三角函数》
一、考题回顾
二、考题解析
【教学过程】
(一)导入新课
【板书设计】
【答辩题目解析】
【参考答案】
科学合理的教学方法能使教学效果事半功倍,达到教学和谐的完美统一。基于此,本节课采用讲授法、练习法、小组讨论法相结合的教学方法。
本节课教学重点是三角函数定义及概念的学习,并且需要结合题目适当练习,因此讲授法结合练习法的方式非常适合本节课的教学。并且小组讨论法能够充分发挥学生的主体性,讲解完正弦的概念后再结合图示,学生通过讨论的形式能够正确总结出正弦的表达式,也便于学生养成乐于与人养成合作的良好心态。
相关推荐: