7.递延年金终值
定义:例如分期付款,前5年不支付,第6年起到15年,每年末支付18万元。
递延年金的终值计算与普通年金的终值计算一样,只是要注意期数。
F=A(F/A,i,n)
式中,“n”表示的是A的个数,与递延期无关。
【例题】某投资者拟购买一处房产,开发商提出了三个付款方案:
方案一是现在起15年内每年末支付10万元;
方案二是现在起15年内每年初支付9.5万元;
方案三是前5年不支付,第六年起到15年每年末支付18万元。
假设按银行贷款利率10%复利计息,若采用终值方式比较,问哪一种付款方式对购买者有利?
解答:
方案一:F=10×(F/A,10%,15)
=10×31.772=317.72(万元)
方案二:F=9.5×[(F/A,10%,15)(1+10%)]
=332.03(万元)
方案三:F=18×(F/A,10%,10)=18×15.937=286.87(万元)
从上述计算可得出,采用第三种付款方案对购买者有利。
8.递延年金现值
图示:例如分期付款,前5年不支付,第6年起到15年,每年末支付18万元。
计算方法一:
先将递延年金视为n期普通年金,求出在m期普通年金现值,然后再折算到第一期期初:
P0=A×(P/A,i,n)×(P/F,i,m)
式中,m为递延期,n为连续收支期数。
计算方法二:
先计算m+n期年金现值,再减去m期年金现值:
P0=A×[(P/A,i,m+n)-(P/A,i,m)]
计算方法三:
先求递延年金终值再折现为现值:
P0=A×(F/A,i,n)×(P/F,i,m+n)
【例题】某企业向银行借入一笔款项,银行贷款的年利率为10%,每年复利一次。银行规定前l0年不用还本付息,但从第11年~第20年每年年末偿还本息5 000元。
要求:用两种方法计算这笔款项的现值。
解答:方法一:
P=A×(P/A,10%,l0)×(P/F,10%,l0)
=5 000×6.145×0.386
=11 860(元)
方法二:
P=A×[(P/A,10%,20)-(P/A,10%,l0)]
=5 000×[8.514-6.145]
=11 845(元)
两种计算方法相差l5元,是因小数点的尾数造成的。
9.永续年金的现值
永续年金的现值可以看成是一个n无穷大后付年金的现值.
P(n→∞)=A[1-(1+i)-n]/i=A/i
【例题】归国华侨吴先生想支持家乡建设,特地在祖籍所在县设立奖学金。奖学金每年发放一次,奖励每年高考的文理科状元各10 000元。奖学金的基金保存在中国银行该县支行。银行一年的定期存款利率为2%。问吴先生要投资多少钱作为奖励基金?
解答:由于每年都要拿出20 000元,因此奖学金的性质是一项永续年金,其现值应为:
20 000/2%=1 000 000(元)
也就是说,吴先生要存入1 000 000元作为基金,才能保证这一奖学金的成功运行。
【例题•单选题】某公司从本年度起每年年末存入银行一笔固定金额的款项,若按复利用最简便算法计算第n年末可以从银行取出的本利和,则应选用的时间价值系数是( )。
A.复利终值数
B.复利现值系数
C.普通年金终值系数
D.普通年金现值系数
【答案】C
【例题•单选题】根据资金时间价值理论,在普通年金现值系数的基础上,期数减1、系数加1的计算结果,应当等于( )。
A.递延年金现值系数 B.后付年金现值系数
C.即付年金现值系数 D.永续年金现值系数
【答案】C
【例题•单选题】在下列各项资金时间价值系数中,与资本回收系数互为倒数关系的是( )。
A.(P/F,I,n) B.(P/A,I,n)
C.(F/P,I,n) D.(F/A,I,n)
【答案】B
【例题•判断题】在有关资金时间价值指标的计算过程中,普通年金现值与普通年金终值是互为逆运算的关系。( )
【答案】×
相关推荐:考试吧特别策划:2010年会计职称考试备考专题