(二)即付年金现值的计算
【定义方法】即付年金现值,就是各期的年金分别求现值,然后累加起来。
【计算方法】
方法一:分两步进行。第一步,先把即付年金看成普通年金,套用普通年金现值的计算公式,计算现值。注意这样得出来的是第一个A前一期位置上的数值。第二步,进行调整。即把第一步计算出来的现值乘以(1+i)向后调整一期,即得出即付年金的现值。
P=A(P/A,i,n)(1+i)
方法二:分两步进行。第一步,先把即付年金转换成普通年金进行计算。转换方法是,假设第1期期初没有等额的收付,这样就转换为普通年金了,可以按照普通年金现值公式计算现值。注意,这样计算出来的现值为n-1期的普通年金现值。第二步,进行调整。即把原来未算的第1期期初的A加上。对计算式子进行整理后,即把A提出来后,就得到了即付年金现值。即付年金现值系数与普通年金现值系数相比,期数减1,系数加1。
P=A[(P/A,i,n-1)+1]
【例11-13】张先生采用分期付款方式购入商品房一套,每年年初付款15 000元,分10年付清。若银行利率为6%,该项分期付款相当于一次现金支付的购买价是多少?
【答案】
【方法一】P=15 000×(P/A,6%,10)×(1+6%)=117 025.5(元)
【方法二】P=A×[(P/A,i,n-1)+1]
=15 000×[(P/A,6%,9)+1]
=15 000×(6.8017+1)=117 025.5(元)
【例11-14】李博士是国内某领域的知名专家,某日接到一家上市公司的邀请函,邀请他作为公司的技术顾问,指导开发新产品。邀请函的具体条件如下:
(1)每个月来公司指导工作一天;
(2)每年聘金10万元;
(3)提供公司所在地A市住房一套,价值80万元;
(4)在公司至少工作5年。
李博士对以上工作待遇很感兴趣,对公司开发的新产品也很有研究,决定应聘。但他不想接受住房,因为每月工作一天,只需要住公司招待所就可以了,这样住房没有专人照顾,因此他向公司提出,能否将住房改为住房补贴。公司研究了李博士的请求,决定可以在今后5年里每年年初给李博士支付20万元房贴。
收到公司的通知后,李博士又犹豫起来,因为如果向公司要住房,可以将其出售,扣除售价5%的契税和手续费,他可以获得76万元,而若接受房贴,则每年年初可获得20万元。假设每年存款利率2%,则李博士应该如何选择?
【答案】
要解决上述问题,主要是要比较李博士每年收到20万元的现值与售房76万元的大小问题。由于房贴每年年初发放,因此对李博士来说是一个即付年金。其现值计算如下:
P=20×[(P/A,2%,4)+1]
=20×[3.8077+1]
=20×4.8077
=96.154(万元)
从这一点来说,李博士应该接受房贴。
如果李博士本身是一个企业的业主,其资金的投资回报率为32%,则他应如何选择呢?
『答案』
在投资回报率为32%的条件下,每年20万的住房补贴现值为:
P=20×[(P/A,32%,4)+1]
=20×[2.0957+1]
=20×3.0957
=61.914(万元)
在这种情况下,应接受住房。
【提示】
即付年金终值系数与普通年金终值系数的关系:期数+1,系数-1
即付年金现值系数与普通年金现值系数的关系:期数-1,系数+1
即付年金终值系数等于普通年金终值系数乘以(1+i)
即付年金现值系数等于普通年金现值系数乘以(1+i)